[1]
C. C. Papanicolaou, T. C. Triantafillou, P. R. Fabregat, Increase of load-carrying capacity of masonry with textile reinforced rendering / Erhöhung der Tragfähigkeit von Mauerwerk mit textilbewehrtem Putz, Mauerwerk, 19 (2015) 40-51.
DOI: 10.1002/dama.201500647
Google Scholar
[2]
ACI 549.6R, Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) and Steel-Reinforced Grout (SRG) Systems for Repair and Strengthening Masonry Structures, ACI, Farmington Hills, (2020).
DOI: 10.14359/51702356
Google Scholar
[3]
fib bulletin 90, Externally applied FRP reinforcement for concrete structures, fib, (2019).
DOI: 10.35789/fib.bull.0090.ch01
Google Scholar
[4]
R. S. Olivito, O. A. Cevallos, A. Carrozzini, Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures, Mater. Des. 57 (2014) 258-268.
DOI: 10.1016/j.matdes.2013.11.023
Google Scholar
[5]
N. Trochoutsou, M. Di Benedetti, K. Pilakoutas, M. Guadagnini, Mechanical Characterisation of Flax and Jute Textile-Reinforced Mortars, Constr. Build. Mater. 271 (2021) 121564.
DOI: 10.1016/j.conbuildmat.2020.121564
Google Scholar
[6]
R. Codispoti, D. V. Oliveira, R. S. Olivito, P. B. Lourenço, R. Fangueiro, Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry, Compos. Part B: Eng. 77 (2015) 74-83.
DOI: 10.1016/j.compositesb.2015.03.021
Google Scholar
[7]
R. S. Olivito, R. Codispoti, O. A. Cevallos, Bond behavior of Flax-FRCM and PBO-FRCM composites applied on clay bricks: Experimental and theoretical study, Compos. Struct. 146 (2016) 221-231.
DOI: 10.1016/j.compstruct.2016.03.004
Google Scholar
[8]
N. Trochoutsou, M. Di Benedetti, K. Pilakoutas, M. Guadagnini, Bond of Flax Textile-Reinforced Mortars to Masonry, Constr. Build. Mater. 284 (2021) 122849.
DOI: 10.1016/j.conbuildmat.2021.122849
Google Scholar
[9]
G. Ferrara, C. Caggegi, E. Martinelli, A. Gabor, Shear capacity of masonry walls externally strengthened using Flax-TRM composite systems: experimental tests and comparative assessment, Constr. Build. Mater. 261 (2020) 120490.
DOI: 10.1016/j.conbuildmat.2020.120490
Google Scholar
[10]
J. Donnini, G. Maracchini, S. Lenci, V. Corinaldesi, E. Quagliarini, TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior, Constr. Build. Mater. 272 (2021) 121643.
DOI: 10.1016/j.conbuildmat.2020.121643
Google Scholar
[11]
G. Magenes, G. M. Calvi, In-Plane Seismic Response of Brick Masonry Walls, Earthq. Eng. Struct. Dyn. 26 (1997) 1091-1112.
DOI: 10.1002/(sici)1096-9845(199711)26:11<1091::aid-eqe693>3.0.co;2-6
Google Scholar
[12]
EN 772-1, Methods of test for masonry units, Part 1: Determination of compressive strength, CEN, Brussels, (2000).
Google Scholar
[13]
EN 1015-11, Methods of test for mortar for masonry, Part 11: Determination of flexural and compressive strength of hardened mortar, CEN, Brussels, (1999).
DOI: 10.3403/01905442
Google Scholar
[14]
EN 1052-1, Methods of test for masonry, Part 1: Determination of compressive strength, CEN, Brussels, (1999).
Google Scholar
[15]
EN 1052-3, Methods of test for mortar for masonry, Part 3: Determination of initial shear strength, CEN, Brussels, (2002).
Google Scholar
[16]
N. Trochoutsou, M. Di Benedetti, K. Pilakoutas, M. Guadagnini, Mechanical Characterisation of Flax and Jute Textile-Reinforced Mortars, Constr. Build. Mater. 271 (2021) 121564.
DOI: 10.1016/j.conbuildmat.2020.121564
Google Scholar
[17]
EN 1998-3, Design of structures for earthquake resistance, Part 3: Assessment and retrofitting of buildings, CEN, Brussels, (2005).
Google Scholar