Microwave-Assisted Synthesis and Characterization of Zeolite Prepared From South Africa Coal Fly Ash

Article Preview

Abstract:

In industry, synthetic zeolites are commonly used as ion-exchange materials, catalyst supports, and adsorbents. As a result, a more energy-efficient alternative for its synthesis from low-cost and accessible raw materials is needed. This study, presents the possibility of using class F South African coal fly ash (SACFA) from Lethaba thermal-power station as a precursor to produce zeolites via a microwave (MW) assisted synthesis route. The mineral content of synthetic materials was determined using X-ray florescence (XRF). Morphology was determined using a Scanning electron microscopy (SEM), elemental composition by energy dispersive spectrometer (EDS). X-ray diffractometry (XRD) was used to get structural characterization. Microwave (MW) irradiation time and intensity enhance the crystallization of the zeolite phase as a result of sufficient energy required to enable the solubility of alumina and silica from coal fly ash. The use of MW irradiation provides a green alternative to zeolite synthesis from fly ash (FA) than traditional thermal and fusion techniques, which uses a great deal of energy consumption and a longer reaction time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-159

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Boitumelo, N.N. Lebea, N.N. Edward, M.M. Nicholas, D.M. Sabelo, Microwave Irradiation-Assisted Synthesis of Zeolites from Coal Fly Ash: An Optimization Study for a Sustainable and Efficient Production Process. ACS Omega. 5 (2020) 25000−25008.

DOI: 10.1021/acsomega.0c00931

Google Scholar

[2] A. Gianoncelli, A. Zacco, R.P. Struis, L. Borgese, L.E. Depero, E. Bontempi, Fly ash pollutants, treatment and recycling. Pollutant diseases, remediation and recycling. (2013) 103-213.

DOI: 10.1007/978-3-319-02387-8_3

Google Scholar

[3] D.R. Chaudhary, A. Gosh, Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop. Environmental Monitoring and Assessment. 185 (2013) 6705-6712.

DOI: 10.1007/s10661-013-3058-x

Google Scholar

[4] W. Franus, M. Wdowin, M. Franus. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ Monit Assess 186 (2014) 5721–5729.

DOI: 10.1007/s10661-014-3815-5

Google Scholar

[5] G. Mousa, J.C. Buhl, Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin, J. of the Assoc. of Arab Univ. for Basic and Appl. Sci. 15 (2014) 35 – 42.

DOI: 10.1016/j.jaubas.2013.03.007

Google Scholar

[6] A. Sartbaeva, S.A. Wells, M.M.J. Treacy, M.F. Thorpe, The flexibility window in zeolites. Nature materials. 5(12) (2006) 962-965.

DOI: 10.1038/nmat1784

Google Scholar

[7] A.T. Chiang, K.J. Chao, Membranes and films of zeolite and zeolite like Materials, J. of Physics and Chemistry of Solids 62 (2001) 1899-1910.

DOI: 10.1016/s0022-3697(01)00122-6

Google Scholar

[8] S.M. Abegunde, K.S. Idowu, O.M. Adejuwon, T. Adeyemi-Adejolu, A review on the influence of chemical modification on the performance of adsorbents, Resources, Environment and Sustainability, 1 (2020) 100001.

DOI: 10.1016/j.resenv.2020.100001

Google Scholar

[9] A. Derkowski, W. Franus, E. Beran, A. Czímerová, Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technol., 166 (2006) 47−54.

DOI: 10.1016/j.powtec.2006.05.004

Google Scholar

[10] M.R. El-Naggar, A.M. El-Kamash, M.I. El-Dessouky, A.K. Ghonaim, Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater., 154 (2008) 963−972.

DOI: 10.1016/j.jhazmat.2007.10.115

Google Scholar

[11] M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, J. Hojo, Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel. 84 (2005) 299−304.

DOI: 10.1016/j.fuel.2005.02.002

Google Scholar

[12] M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, N.H. Heo, Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous Mesoporous Mater. 37 (2000) 81−89.

DOI: 10.1016/s1387-1811(99)00196-1

Google Scholar

[13] Y. Liu, C. Yan, J. Zhao, Z. Zhang, H. Wang, S. Zhou, L. Wu, Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J. Clean. Prod. 202 (2018) 11−22.

DOI: 10.1016/j.jclepro.2018.08.128

Google Scholar

[14] T.V. Ojumu, P.W. Du Plessis, L.F. Petrik, Synthesis of zeolite A from coal fly ash using ultrasonic treatment − a replacement for fusion step. Ultrason. Sonochem. 31 (2016) 342−349.

DOI: 10.1016/j.ultsonch.2016.01.016

Google Scholar

[15] H. Tanaka, A. Fujii, S. Fujimoto, Y. Tanaka, Microwave assisted two-step process for the synthesis of a single-phase Na-A zeolite from coal fly ash. Adv. Powder Technol. 19 (2008) 83−94.

DOI: 10.1163/156855208x291783

Google Scholar

[16] C. Belviso, Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrason. Sonochem. 43 (2018) 9−14.

DOI: 10.1016/j.ultsonch.2017.12.050

Google Scholar

[17] P.E. Imoisili, K.O. Ukoba, T.C. Jen, Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J Mater Res Technol. 9(3) (2020) 4933-4939.

DOI: 10.1016/j.jmrt.2020.03.012

Google Scholar

[18] P.E. Imoisili, T.C. Jen, B. Safaei, Microwave-assisted sol–gel synthesis of TiO2-mixed metal oxide nanocatalyst for degradation of organic pollutant. Nanotechnology Reviews 10 (2021) 1–11.

DOI: 10.1515/ntrev-2021-0016

Google Scholar

[19] P.E. Imoisili, I. TonyeDagogo, A.V. Popoola, A.E. Okoronkwo, Effect of Microwave Radiation on The Macromolecular, Morphological and Crystallographic Structures of Plantain (Musa paradisiaca) Fibre. J. Mater. Environ. Sci., 9 (4) (2018) 1301-1305.

Google Scholar

[20] A. Walker, T.D. Wheelock, Separation of Carbon from Fly Ash Using Froth Flotation. Coal Prep. 26(4) (2006) 235–250.

DOI: 10.1080/07349340601104883

Google Scholar

[21] American Society for Testing and Materials, ASTM C618, Annual Book of ASTM Standard, West Conshohocken, US, (2004).

Google Scholar

[22] C.L. Liu, S.L. Zheng, S.H. Ma, Y. Luo, J. Ding, X.H. Wang, Y. Zhang, A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash. Fuel Processing Technology 173 (2018) 40–47.

DOI: 10.1016/j.fuproc.2018.01.007

Google Scholar

[23] A. Walker, T.D. Wheelock, Separation of Carbon from Fly Ash Using Froth Flotation. Coal Prep. 26(4) (2006) 235–250.

DOI: 10.1080/07349340601104883

Google Scholar

[24] N.M. Musyoka, L.F. Petrik, W.M. Gitari, G. Balfour, E. Hums, Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47(3) (2012) 337-350.

DOI: 10.1080/10934529.2012.645779

Google Scholar

[25] N.M. Musyoka, L. Petrik, E. Hums, Synthesis of zeolite A, X and P from a South African coal fly ash. Advanced Materials Research 512 (2012) 1757-1762.

DOI: 10.4028/www.scientific.net/amr.512-515.1757

Google Scholar

[26] L.F. Petrik, V.R.K. Vadapalli, W. Gitari, O. Etchebers, K. Reynolds, D. Surender, V. Fester, P. Slatter, G. Sery, Large scale stability and neutralization capacity of potential mine backfill material formed by neutralization of fly ash and acid mine drainage, WRC Report no 662, University of the Western Cape, (2007).

DOI: 10.36487/acg_repo/863_27

Google Scholar

[27] T.F. de Aquinoa, S.T. Estevam, V.O. Viola, C.R.M. Marques, F.L. Zancan, L.B. Vasconcelos, H.G. Riella, M.J. Pires, R. Morales-Ospino, A.E.B. Torres, M. Bastos-Neto, C.L. Cavalcante, CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 276 (2020) 118143.

DOI: 10.1016/j.fuel.2020.118143

Google Scholar

[28] D. Mainganye, T.V. Ojumu, L. Petrik, Synthesis of zeolites Na-P1 from South Africa coal fly Ash: effect of impeller design and agitation. Materials 6 (2013) 2074–(2089).

DOI: 10.3390/ma6052074

Google Scholar