[1]
M. Boitumelo, N.N. Lebea, N.N. Edward, M.M. Nicholas, D.M. Sabelo, Microwave Irradiation-Assisted Synthesis of Zeolites from Coal Fly Ash: An Optimization Study for a Sustainable and Efficient Production Process. ACS Omega. 5 (2020) 25000−25008.
DOI: 10.1021/acsomega.0c00931
Google Scholar
[2]
A. Gianoncelli, A. Zacco, R.P. Struis, L. Borgese, L.E. Depero, E. Bontempi, Fly ash pollutants, treatment and recycling. Pollutant diseases, remediation and recycling. (2013) 103-213.
DOI: 10.1007/978-3-319-02387-8_3
Google Scholar
[3]
D.R. Chaudhary, A. Gosh, Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop. Environmental Monitoring and Assessment. 185 (2013) 6705-6712.
DOI: 10.1007/s10661-013-3058-x
Google Scholar
[4]
W. Franus, M. Wdowin, M. Franus. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ Monit Assess 186 (2014) 5721–5729.
DOI: 10.1007/s10661-014-3815-5
Google Scholar
[5]
G. Mousa, J.C. Buhl, Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin, J. of the Assoc. of Arab Univ. for Basic and Appl. Sci. 15 (2014) 35 – 42.
DOI: 10.1016/j.jaubas.2013.03.007
Google Scholar
[6]
A. Sartbaeva, S.A. Wells, M.M.J. Treacy, M.F. Thorpe, The flexibility window in zeolites. Nature materials. 5(12) (2006) 962-965.
DOI: 10.1038/nmat1784
Google Scholar
[7]
A.T. Chiang, K.J. Chao, Membranes and films of zeolite and zeolite like Materials, J. of Physics and Chemistry of Solids 62 (2001) 1899-1910.
DOI: 10.1016/s0022-3697(01)00122-6
Google Scholar
[8]
S.M. Abegunde, K.S. Idowu, O.M. Adejuwon, T. Adeyemi-Adejolu, A review on the influence of chemical modification on the performance of adsorbents, Resources, Environment and Sustainability, 1 (2020) 100001.
DOI: 10.1016/j.resenv.2020.100001
Google Scholar
[9]
A. Derkowski, W. Franus, E. Beran, A. Czímerová, Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technol., 166 (2006) 47−54.
DOI: 10.1016/j.powtec.2006.05.004
Google Scholar
[10]
M.R. El-Naggar, A.M. El-Kamash, M.I. El-Dessouky, A.K. Ghonaim, Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater., 154 (2008) 963−972.
DOI: 10.1016/j.jhazmat.2007.10.115
Google Scholar
[11]
M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, J. Hojo, Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel. 84 (2005) 299−304.
DOI: 10.1016/j.fuel.2005.02.002
Google Scholar
[12]
M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, N.H. Heo, Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous Mesoporous Mater. 37 (2000) 81−89.
DOI: 10.1016/s1387-1811(99)00196-1
Google Scholar
[13]
Y. Liu, C. Yan, J. Zhao, Z. Zhang, H. Wang, S. Zhou, L. Wu, Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J. Clean. Prod. 202 (2018) 11−22.
DOI: 10.1016/j.jclepro.2018.08.128
Google Scholar
[14]
T.V. Ojumu, P.W. Du Plessis, L.F. Petrik, Synthesis of zeolite A from coal fly ash using ultrasonic treatment − a replacement for fusion step. Ultrason. Sonochem. 31 (2016) 342−349.
DOI: 10.1016/j.ultsonch.2016.01.016
Google Scholar
[15]
H. Tanaka, A. Fujii, S. Fujimoto, Y. Tanaka, Microwave assisted two-step process for the synthesis of a single-phase Na-A zeolite from coal fly ash. Adv. Powder Technol. 19 (2008) 83−94.
DOI: 10.1163/156855208x291783
Google Scholar
[16]
C. Belviso, Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrason. Sonochem. 43 (2018) 9−14.
DOI: 10.1016/j.ultsonch.2017.12.050
Google Scholar
[17]
P.E. Imoisili, K.O. Ukoba, T.C. Jen, Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiacal) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J Mater Res Technol. 9(3) (2020) 4933-4939.
DOI: 10.1016/j.jmrt.2020.03.012
Google Scholar
[18]
P.E. Imoisili, T.C. Jen, B. Safaei, Microwave-assisted sol–gel synthesis of TiO2-mixed metal oxide nanocatalyst for degradation of organic pollutant. Nanotechnology Reviews 10 (2021) 1–11.
DOI: 10.1515/ntrev-2021-0016
Google Scholar
[19]
P.E. Imoisili, I. TonyeDagogo, A.V. Popoola, A.E. Okoronkwo, Effect of Microwave Radiation on The Macromolecular, Morphological and Crystallographic Structures of Plantain (Musa paradisiaca) Fibre. J. Mater. Environ. Sci., 9 (4) (2018) 1301-1305.
Google Scholar
[20]
A. Walker, T.D. Wheelock, Separation of Carbon from Fly Ash Using Froth Flotation. Coal Prep. 26(4) (2006) 235–250.
DOI: 10.1080/07349340601104883
Google Scholar
[21]
American Society for Testing and Materials, ASTM C618, Annual Book of ASTM Standard, West Conshohocken, US, (2004).
Google Scholar
[22]
C.L. Liu, S.L. Zheng, S.H. Ma, Y. Luo, J. Ding, X.H. Wang, Y. Zhang, A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash. Fuel Processing Technology 173 (2018) 40–47.
DOI: 10.1016/j.fuproc.2018.01.007
Google Scholar
[23]
A. Walker, T.D. Wheelock, Separation of Carbon from Fly Ash Using Froth Flotation. Coal Prep. 26(4) (2006) 235–250.
DOI: 10.1080/07349340601104883
Google Scholar
[24]
N.M. Musyoka, L.F. Petrik, W.M. Gitari, G. Balfour, E. Hums, Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47(3) (2012) 337-350.
DOI: 10.1080/10934529.2012.645779
Google Scholar
[25]
N.M. Musyoka, L. Petrik, E. Hums, Synthesis of zeolite A, X and P from a South African coal fly ash. Advanced Materials Research 512 (2012) 1757-1762.
DOI: 10.4028/www.scientific.net/amr.512-515.1757
Google Scholar
[26]
L.F. Petrik, V.R.K. Vadapalli, W. Gitari, O. Etchebers, K. Reynolds, D. Surender, V. Fester, P. Slatter, G. Sery, Large scale stability and neutralization capacity of potential mine backfill material formed by neutralization of fly ash and acid mine drainage, WRC Report no 662, University of the Western Cape, (2007).
DOI: 10.36487/acg_repo/863_27
Google Scholar
[27]
T.F. de Aquinoa, S.T. Estevam, V.O. Viola, C.R.M. Marques, F.L. Zancan, L.B. Vasconcelos, H.G. Riella, M.J. Pires, R. Morales-Ospino, A.E.B. Torres, M. Bastos-Neto, C.L. Cavalcante, CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 276 (2020) 118143.
DOI: 10.1016/j.fuel.2020.118143
Google Scholar
[28]
D. Mainganye, T.V. Ojumu, L. Petrik, Synthesis of zeolites Na-P1 from South Africa coal fly Ash: effect of impeller design and agitation. Materials 6 (2013) 2074–(2089).
DOI: 10.3390/ma6052074
Google Scholar