Effect of Copper-Nanofluids Cooling Media on Flow and Thermal Characteristics of a Cross-Flow Heat Exchanger

Article Preview

Abstract:

This study investigates transport process in circular tubes cross-flow Heat Exchanger (HEX) using water-CuO-nanofluids cooling media. The effects of nanoparticle volume fractions (Ø) and Reynolds number (Re) on the flow structure, coefficient of skin friction, isotherms and Nusselt number (Nu) are determined for steady laminar flow. The governing equations of continuity, momentum and energy are discretized over the flow domain and solved using SIMPLE method of the Finite Volume Method with ANSYS Fluent 16. The results show that the flow field for the conventional fluid is concentric around the inner tubes for Re up to 60 after which vortices evolve downstream behind the tubes, elongate and eclipse with the increase in Re. Vortex inception occurs at Re between 60 and 45 for 0 ≤ Ø ≤ 10%. The temperature fields are characterized by plume-like structure which envelopes the two inner cylinders between which heat transfer occurs. The average Nusselt number is correlated as Nu = 22.4 - 411,588Ø3 + 0.757Re + 1803.31/ln(Re) in which the interaction between Re and Nu has significant (p ≤ 0.05) effect. The addition of nanoparticles in the range 2 ≤ Ø ≤ 10% results in the increase in Nu from 0.55 to 5.84%. It follows that the thermal performance of the cross flow heat exchanger could be enhanced with CuO-based nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-198

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Meikandan, M. Sundarraj, D. Yogaraj, K. Malarmohan, Experimental and numerical investigation on bare tube cross flow heat exchanger-using COMSOL, Int. J. Ambient Energy. 41 (2020). https://doi.org/10.1080/01430750.2018.1472650.

DOI: 10.1080/01430750.2018.1472650

Google Scholar

[2] L. Liu, T. Zeng, H. Huang, M. Kubota, N. Kobayashi, Z. He, J. Li, L. Deng, X. Li, Y. Feng, K. Yan, Numerical modelling and parametric study of an air-cooled desiccant coated cross-flow heat exchanger, Appl. Therm. Eng. 169 (2020). https://doi.org/10.1016/j.applthermaleng.2020.114901.

DOI: 10.1016/j.applthermaleng.2020.114901

Google Scholar

[3] F.C. Magazoni, L. Cabezas-Gómez, P.F. Alvariño, J.M. Sáiz-Jabardo, Closed form relationships of temperature effectiveness of cross-flow heat exchangers, Therm. Sci. Eng. Prog. 9 (2019). https://doi.org/10.1016/j.tsep.2018.11.005.

DOI: 10.1016/j.tsep.2018.11.005

Google Scholar

[4] T. Gao, J. Geer, B. Sammakia, Review and analysis of cross flow heat exchanger transient modeling for flow rate and temperature variations, J. Therm. Sci. Eng. Appl. 7 (2015). https://doi.org/10.1115/1.4031222.

DOI: 10.1115/1.4031222

Google Scholar

[5] A. El Maakoul, A. Laknizi, S. Saadeddine, M. El Metoui, A. Zaite, M. Meziane, A. Ben Abdellah, Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles, Appl. Therm. Eng. 109 (2016). https://doi.org/10.1016/j.applthermaleng.2016.08.067.

DOI: 10.1016/j.applthermaleng.2016.08.067

Google Scholar

[6] Y. Long, S. Wang, J. Wang, T. Zhang, Mathematical Model of Heat Transfer for a Finned Tube Cross-flow Heat Exchanger with Ice Slurry as Cooling Medium, in: Procedia Eng., 2016. https://doi.org/10.1016/j.proeng.2016.06.386.

DOI: 10.1016/j.proeng.2016.06.386

Google Scholar

[7] M.S.Y. Ebaid, A.M. Ghrair, M. Al-Busoul, Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture, Energy Convers. Manag. 155 (2018). https://doi.org/10.1016/j.enconman.2017.10.074.

DOI: 10.1016/j.enconman.2017.10.074

Google Scholar

[8] M.A. Arie, D.M. Hymas, F. Singer, A.H. Shooshtari, M. Ohadi, An additively manufactured novel polymer composite heat exchanger for dry cooling applications, Int. J. Heat Mass Transf. 147 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118889.

DOI: 10.1016/j.ijheatmasstransfer.2019.118889

Google Scholar

[9] L.Z. Zhang, Z.X. Li, T.S. Zhong, L.X. Pei, Flow maldistribution and performance deteriorations in a cross flow hollow fiber membrane module for air humidification, J. Memb. Sci. 427 (2013). https://doi.org/10.1016/j.memsci.2012.09.030.

DOI: 10.1016/j.memsci.2012.09.030

Google Scholar

[10] R.S. Matos, T.A. Laursen, J.V.C. Vargas, A. Bejan, Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection, Int. J. Therm. Sci. 43 (2004). https://doi.org/10.1016/j.ijthermalsci.2003.10.003.

DOI: 10.1016/j.ijthermalsci.2003.10.003

Google Scholar

[11] S. Salari, S.M. Jafari, Application of nanofluids for thermal processing of food products, Trends Food Sci. Technol. 97 (2020). https://doi.org/10.1016/j.tifs.2020.01.004.

DOI: 10.1016/j.tifs.2020.01.004

Google Scholar

[12] H. Moghadasi, E. Aminian, H. Saffari, M. Mahjoorghani, A. Emamifar, Numerical analysis on laminar forced convection improvement of hybrid nanofluid within a U-bend pipe in porous media, Int. J. Mech. Sci. 179 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105659.

DOI: 10.1016/j.ijmecsci.2020.105659

Google Scholar

[13] Y.S. Dhale, L. P., Wadhave, P. B., Kanade, D. V., Sable, Effect of nanofluid on cooling system of engine, Int. J. Eng. Appl. Sci. 2 (2015) 8–10.

Google Scholar

[14] Y.B. Tao, Y.L. He, Z.G. Wu, W.Q. Tao, Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes, Int. J. Heat Fluid Flow. 28 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2007.02.001.

DOI: 10.1016/j.ijheatfluidflow.2007.02.001

Google Scholar

[15] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow. 21 (2000) 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[16] M.G. Rao, P.P. Kumar, A.M.V. Praveen, Numerical Investigation of Heat Transfer Characteristics of a Nano Fluid in a Circumferential Fin Tube Heat Exchanger, Int. J. Adv. Eng. Res. Dev. 4 (2017). https://doi.org/10.21090/ijaerd.99155.

DOI: 10.21090/ijaerd.99155

Google Scholar

[17] S. Jayavel, S. Tiwari, Numerical study of heat transfer and pressure drop for flow past inline and staggered tube bundles, Int. J. Numer. Methods Heat Fluid Flow. 19 (2009). https://doi.org/10.1108/09615530910994432.

DOI: 10.1108/09615530910994432

Google Scholar

[18] C.K. Mangrulkar, A.S. Dhoble, S.G. Chakrabarty, U.S. Wankhede, Experimental and CFD prediction of heat transfer and friction factor characteristics in cross flow tube bank with integral splitter plate, Int. J. Heat Mass Transf. 104 (2017). https://doi.org/10.1016/ j.ijheatmasstransfer.2016.09.013.

DOI: 10.1016/j.ijheatmasstransfer.2016.09.013

Google Scholar

[19] T.K. Bose, Numerical Fluid Dynamics, Narosa Publ, House, London, (1997).

Google Scholar

[20] Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, Fourth, New York, (2002).

Google Scholar

[21] M.A. Ahmed, M.M. Yaseen, M.Z. Yusoff, Numerical study of convective heat transfer from tube bank in cross flow using nanofluid, Case Stud. Therm. Eng. 10 (2017). https://doi.org/10.1016/j.csite.2017.11.002.

DOI: 10.1016/j.csite.2017.11.002

Google Scholar

[22] A. Mahdy, H.M. ElShehabey, Uncertainties in physical property effects on viscous flow and heat transfer over a nonlinearly stretching sheet with nanofluids, Int. Commun. Heat Mass Transf. 39 (2012) 713–719. https://doi.org/10.1016/J.ICHEATMASSTRANSFER. 2012.03.019.

DOI: 10.1016/j.icheatmasstransfer.2012.03.019

Google Scholar

[23] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow. 29 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[24] M.A. Ahmed, N.H. Shuaib, M.Z. Yusoff, A.H. Al-Falahi, Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid, Int. Commun. Heat Mass Transf. 38 (2011) 1368–1375. https://doi.org/10.1016/j.icheatmasstransfer.2011.08.013.

DOI: 10.1016/j.icheatmasstransfer.2011.08.013

Google Scholar

[25] M.A. Ahmed, M.Z. Yusoff, K.C. Ng, N.H. Shuaib, Effect of corrugation profile on the thermal-hydraulic performance of corrugated channels using CuO-water nanofluid, Case Stud. Therm. Eng. 4 (2014). https://doi.org/10.1016/j.csite.2014.07.001.

DOI: 10.1016/j.csite.2014.07.001

Google Scholar

[26] M. Vegad, S. Satadia, P. Pradip, P. Chirag, P. Bhargav, Heat Transfer Characteristics of Low Reynolds Number Flow of Nanofluid Around a Heated Circular Cylinder, Procedia Technol. 14 (2014). https://doi.org/10.1016/j.protcy.2014.08.045.

DOI: 10.1016/j.protcy.2014.08.045

Google Scholar

[27] M. Ali, A.M. El-Leathy, Z. Al-Sofyany, The effect of nanofluid concentration on the cooling system of vehicles radiator, Adv. Mech. Eng. 2014 (2014). https://doi.org/10.1155/2014/962510.

DOI: 10.1155/2014/962510

Google Scholar

[28] P.K. Namburu, K. Debendra Das, S. Ravikanth Vajjha, Comparison of the performance of copper oxide nanofluid with water in electronic cooling, J. ASTM Int. 9 (2012). https://doi.org/10.1520/JAI104342.

DOI: 10.1520/jai104342

Google Scholar