[1]
Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications, Sensors and Actuators B: Chemical, 256 (2018) 656-664.
DOI: 10.1016/j.snb.2017.09.206
Google Scholar
[2]
V. Kumar, D.R. Roy, Single-layer stanane as potential gas sensor for NO2, SO2, CO2 and NH3 under DFT investigation, Physica E: Low-dimensional Systems and Nanostructures, 110 (2019) 100-106.
DOI: 10.1016/j.physe.2019.02.001
Google Scholar
[3]
M.D. Esrafili, Boron and nitrogen co-doped graphene nanosheets for NO and NO2 gas sensing, Physics Letters A, 383 (2019) 1607-1614.
DOI: 10.1016/j.physleta.2019.02.017
Google Scholar
[4]
H. Peng, F. Li, Z. Hua, K. Yang, F. Yin, W. Yuan, Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene, Sensors and Actuators B: Chemical, 275 (2018) 78-85.
DOI: 10.1016/j.snb.2018.08.036
Google Scholar
[5]
Y. Chen, H. Qin, J. Hu, CO sensing properties and mechanism of Pd doped SnO2 thick-films, Applied Surface Science, 428 (2018) 207-217.
DOI: 10.1016/j.apsusc.2017.08.205
Google Scholar
[6]
M. Rouhani, S. Kord, Z. Mirjafary, Ga-doped phagraphene as a superior media for sensing of carbon monoxide: a detailed theoretical investigation, Physica E: Low-dimensional Systems and Nanostructures, 116 (2019) 113710.
DOI: 10.1016/j.physe.2019.113710
Google Scholar
[7]
C.-P. Zhang, B. Li, Z.-G. Shao, First-principle investigation of CO and CO2 adsorption on Fe-doped penta-graphene, Applied Surface Science, 469 (2019) 641-646.
DOI: 10.1016/j.apsusc.2018.11.072
Google Scholar
[8]
S. Lee, W. Lee, Y. Hong, G. Lee, D. Yoon, Recent advances in carbon material-based NO2 gas sensors, Sensors and Actuators B: Chemical, 255 (2018) 1788-1804.
DOI: 10.1016/j.snb.2017.08.203
Google Scholar
[9]
J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao, Q. Yang, Y. Wang, G. Lu, Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide, Sensors and Actuators B: Chemical, 249 (2017) 715-724.
DOI: 10.1016/j.snb.2017.04.190
Google Scholar
[10]
Z. Bo, X. Guo, X. Wei, H. Yang, J. Yan, K. Cen, Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene, Physica E: Low-dimensional Systems and Nanostructures, 109 (2019) 156-163.
DOI: 10.1016/j.physe.2019.01.012
Google Scholar
[11]
B. Szczęśniak, J. Choma, M. Jaroniec, Gas adsorption properties of graphene-based materials, Advances in Colloid and Interface Science, 243 (2017) 46-59.
DOI: 10.1016/j.cis.2017.03.007
Google Scholar
[12]
H. Elhaes, A. Fakhry, M. Ibrahim, Carbon nano materials as gas sensors, Materials Today: Proceedings, 3 (2016) 2483-2492.
DOI: 10.1016/j.matpr.2016.04.166
Google Scholar
[13]
S. Hafiz, R. Ritikos, T. Whitcher, N. Razib, D. Bien, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, N. Huang, S. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide, Sensors and Actuators B: Chemical, 193 (2014) 692-700.
DOI: 10.1016/j.snb.2013.12.017
Google Scholar
[14]
F. Schedin, A.K. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K.J.N.m. Novoselov, Detection of individual gas molecules adsorbed on graphene, 6 9 (2007) 652-655.
DOI: 10.1038/nmat1967
Google Scholar
[15]
S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: A review, Sensors and Actuators B: Chemical, 221 (2015) 1170-1181.
DOI: 10.1016/j.snb.2015.07.070
Google Scholar
[16]
A.V. Singhal, H. Charaya, I. Lahiri, Noble metal decorated graphene-based gas sensors and their fabrication: A review, Critical Reviews in Solid State and Materials Sciences, 42 (2017) 499-526.
DOI: 10.1080/10408436.2016.1244656
Google Scholar
[17]
J. Ni, M. Quintana, S. Song, Adsorption of small gas molecules on transition metal (Fe, Ni and Co, Cu) doped graphene: A systematic DFT study, Physica E: Low-dimensional Systems and Nanostructures, 116 (2019) 113768.
DOI: 10.1016/j.physe.2019.113768
Google Scholar
[18]
V.I. Sysoev, A.V. Okotrub, I.P. Asanov, P.N. Gevko, L.G. Bulusheva, Advantage of graphene fluorination instead of oxygenation for restorable adsorption of gaseous ammonia and nitrogen dioxide, Carbon, 118 (2017) 225-232.
DOI: 10.1016/j.carbon.2017.03.026
Google Scholar
[19]
J. Wang, S. Rathi, B. Singh, I. Lee, S. Maeng, H.-I. Joh, G.-H. Kim, Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nanohybrid for highly-sensitive multiple gas sensor, Sensors and Actuators B: Chemical, 220 (2015) 755-761.
DOI: 10.1016/j.snb.2015.05.133
Google Scholar
[20]
M.S.M. Shukri, M.N.S. Saimin, M.K. Yaakob, M.Z.A. Yahya, M.F.M. Taib, Structural and electronic properties of CO and NO gas molecules on Pd-doped vacancy graphene: A first principles study, Applied Surface Science, 494 (2019) 817-828.
DOI: 10.1016/j.apsusc.2019.07.238
Google Scholar
[21]
S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors, Sensors and Actuators B: Chemical, 218 (2015) 160–183.
DOI: 10.1016/j.snb.2015.04.062
Google Scholar
[22]
S. Yang, G. Lei, H. Xu, B. Xu, H. Li, Z. Lan, Z. Wang, H. Gu, A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field, Applied Surface Science, 480 (2019) 205-211.
DOI: 10.1016/j.apsusc.2019.02.244
Google Scholar
[23]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[24]
B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, The Journal of Chemical Physics, 92 (1990) 508-517.
DOI: 10.1063/1.458452
Google Scholar
[25]
X. Gao, Q. Zhou, J. Wang, L. Xu, W. Zeng, Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study, Applied Surface Science, 517 (2020) 146180.
DOI: 10.1016/j.apsusc.2020.146180
Google Scholar
[26]
S. Yang, Z. Lan, H. Xu, G. Lei, W. Xie, Q. Gu, A First-Principles Study on Hydrogen Sensing Properties of Pristine and Mo-Doped Graphene, Journal of Nanotechnology, 2018 (2018) 1-5.
DOI: 10.1155/2018/2031805
Google Scholar
[27]
L. Ma, J.-M. Zhang, K.-W. Xu, V. Ji, A first-principles study on gas sensing properties of graphene and Pd-doped graphene, Applied Surface Science, 343 (2015) 121-127.
DOI: 10.1016/j.apsusc.2015.03.068
Google Scholar
[28]
Y. Qin, M. Liu, Z. Ye, A DFT study on WO3 nanowires with different orientations for NO2 sensing application, Journal of Molecular Structure, 1076 (2014) 546-553.
DOI: 10.1016/j.molstruc.2014.08.034
Google Scholar
[29]
W. Yao, S. Zhou, Z. Wang, Z. Lu, C. Hou, Antioxidant behaviors of graphene in marine environment: A first-principles simulation, Applied Surface Science, 499 (2020) 143962.
DOI: 10.1016/j.apsusc.2019.143962
Google Scholar
[30]
D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental Review of Graphene, ISRN Condensed Matter Physics, 2012 (2012) 501686.
DOI: 10.5402/2012/501686
Google Scholar
[31]
C. Wang, Y. Fang, H. Duan, G. Liang, W. Li, D. Chen, M. Long, DFT study of CO2 adsorption properties on pristine, vacancy and doped graphenes, Solid State Communications, 337 (2021) 114436.
DOI: 10.1016/j.ssc.2021.114436
Google Scholar
[32]
M. Singla, D. Sharma, N. Jaggi, Effect of transition metal (Cu and Pt) doping/ co-doping on hydrogen gas sensing capability of graphene: A DFT study, International Journal of Hydrogen Energy, 46 (2021) 16188-16201.
DOI: 10.1016/j.ijhydene.2021.02.004
Google Scholar
[33]
Z. Khodadadi, Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: Insights from DFT study, Physica E: Low-dimensional Systems and Nanostructures, 99 (2018) 261-268.
DOI: 10.1016/j.physe.2018.02.022
Google Scholar
[34]
A. Abbasi, J.J. Sardroodi, Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations, Applied Surface Science, 442 (2018) 368-381.
DOI: 10.1016/j.apsusc.2018.02.183
Google Scholar
[35]
G. Gui, J. Li, J. Zhong, Band structure engineering of graphene by strain: First-principles calculations, Physical Review B, 78 (2008) 075435.
DOI: 10.1103/physrevb.78.075435
Google Scholar