Effect of Ni Doping and Vacancy Defects on the Sensing Characteristics of Graphene for NO2 and CO Detection: A DFT Study

Article Preview

Abstract:

The sensing characteristics of pristine, Ni-doped, and C-vacancy graphene towards CO and NO2 gas molecules were studied using density functional theory (DFT). The adsorption energies, electronic properties, charge transfer, and stable geometries were calculated to evaluate the gas-surface interaction mechanisms. Both pristine and vacancy graphene have smaller CO and NO2 adsorption energies and charge transfer than the Ni-doped graphene, whereas the adsorption energy on Ni-doped vacancy graphene is higher than that of Ni-doped graphene. The results indicate that both CO and NO2 gas molecules only attach to pristine graphene through weak physical adsorption. Stronger chemisorption occurs when the gas molecules adsorb on the surface of vacancy, Ni-doped, and Ni-doped vacancy graphene. Additionally, the results demonstrated that Ni-doped vacancy graphene has higher sensitivity and selectivity towards the NO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-181

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications, Sensors and Actuators B: Chemical, 256 (2018) 656-664.

DOI: 10.1016/j.snb.2017.09.206

Google Scholar

[2] V. Kumar, D.R. Roy, Single-layer stanane as potential gas sensor for NO2, SO2, CO2 and NH3 under DFT investigation, Physica E: Low-dimensional Systems and Nanostructures, 110 (2019) 100-106.

DOI: 10.1016/j.physe.2019.02.001

Google Scholar

[3] M.D. Esrafili, Boron and nitrogen co-doped graphene nanosheets for NO and NO2 gas sensing, Physics Letters A, 383 (2019) 1607-1614.

DOI: 10.1016/j.physleta.2019.02.017

Google Scholar

[4] H. Peng, F. Li, Z. Hua, K. Yang, F. Yin, W. Yuan, Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene, Sensors and Actuators B: Chemical, 275 (2018) 78-85.

DOI: 10.1016/j.snb.2018.08.036

Google Scholar

[5] Y. Chen, H. Qin, J. Hu, CO sensing properties and mechanism of Pd doped SnO2 thick-films, Applied Surface Science, 428 (2018) 207-217.

DOI: 10.1016/j.apsusc.2017.08.205

Google Scholar

[6] M. Rouhani, S. Kord, Z. Mirjafary, Ga-doped phagraphene as a superior media for sensing of carbon monoxide: a detailed theoretical investigation, Physica E: Low-dimensional Systems and Nanostructures, 116 (2019) 113710.

DOI: 10.1016/j.physe.2019.113710

Google Scholar

[7] C.-P. Zhang, B. Li, Z.-G. Shao, First-principle investigation of CO and CO2 adsorption on Fe-doped penta-graphene, Applied Surface Science, 469 (2019) 641-646.

DOI: 10.1016/j.apsusc.2018.11.072

Google Scholar

[8] S. Lee, W. Lee, Y. Hong, G. Lee, D. Yoon, Recent advances in carbon material-based NO2 gas sensors, Sensors and Actuators B: Chemical, 255 (2018) 1788-1804.

DOI: 10.1016/j.snb.2017.08.203

Google Scholar

[9] J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao, Q. Yang, Y. Wang, G. Lu, Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide, Sensors and Actuators B: Chemical, 249 (2017) 715-724.

DOI: 10.1016/j.snb.2017.04.190

Google Scholar

[10] Z. Bo, X. Guo, X. Wei, H. Yang, J. Yan, K. Cen, Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene, Physica E: Low-dimensional Systems and Nanostructures, 109 (2019) 156-163.

DOI: 10.1016/j.physe.2019.01.012

Google Scholar

[11] B. Szczęśniak, J. Choma, M. Jaroniec, Gas adsorption properties of graphene-based materials, Advances in Colloid and Interface Science, 243 (2017) 46-59.

DOI: 10.1016/j.cis.2017.03.007

Google Scholar

[12] H. Elhaes, A. Fakhry, M. Ibrahim, Carbon nano materials as gas sensors, Materials Today: Proceedings, 3 (2016) 2483-2492.

DOI: 10.1016/j.matpr.2016.04.166

Google Scholar

[13] S. Hafiz, R. Ritikos, T. Whitcher, N. Razib, D. Bien, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, N. Huang, S. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide, Sensors and Actuators B: Chemical, 193 (2014) 692-700.

DOI: 10.1016/j.snb.2013.12.017

Google Scholar

[14] F. Schedin, A.K. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K.J.N.m. Novoselov, Detection of individual gas molecules adsorbed on graphene, 6 9 (2007) 652-655.

DOI: 10.1038/nmat1967

Google Scholar

[15] S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: A review, Sensors and Actuators B: Chemical, 221 (2015) 1170-1181.

DOI: 10.1016/j.snb.2015.07.070

Google Scholar

[16] A.V. Singhal, H. Charaya, I. Lahiri, Noble metal decorated graphene-based gas sensors and their fabrication: A review, Critical Reviews in Solid State and Materials Sciences, 42 (2017) 499-526.

DOI: 10.1080/10408436.2016.1244656

Google Scholar

[17] J. Ni, M. Quintana, S. Song, Adsorption of small gas molecules on transition metal (Fe, Ni and Co, Cu) doped graphene: A systematic DFT study, Physica E: Low-dimensional Systems and Nanostructures, 116 (2019) 113768.

DOI: 10.1016/j.physe.2019.113768

Google Scholar

[18] V.I. Sysoev, A.V. Okotrub, I.P. Asanov, P.N. Gevko, L.G. Bulusheva, Advantage of graphene fluorination instead of oxygenation for restorable adsorption of gaseous ammonia and nitrogen dioxide, Carbon, 118 (2017) 225-232.

DOI: 10.1016/j.carbon.2017.03.026

Google Scholar

[19] J. Wang, S. Rathi, B. Singh, I. Lee, S. Maeng, H.-I. Joh, G.-H. Kim, Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nanohybrid for highly-sensitive multiple gas sensor, Sensors and Actuators B: Chemical, 220 (2015) 755-761.

DOI: 10.1016/j.snb.2015.05.133

Google Scholar

[20] M.S.M. Shukri, M.N.S. Saimin, M.K. Yaakob, M.Z.A. Yahya, M.F.M. Taib, Structural and electronic properties of CO and NO gas molecules on Pd-doped vacancy graphene: A first principles study, Applied Surface Science, 494 (2019) 817-828.

DOI: 10.1016/j.apsusc.2019.07.238

Google Scholar

[21] S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors, Sensors and Actuators B: Chemical, 218 (2015) 160–183.

DOI: 10.1016/j.snb.2015.04.062

Google Scholar

[22] S. Yang, G. Lei, H. Xu, B. Xu, H. Li, Z. Lan, Z. Wang, H. Gu, A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field, Applied Surface Science, 480 (2019) 205-211.

DOI: 10.1016/j.apsusc.2019.02.244

Google Scholar

[23] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[24] B. Delley, An all‐electron numerical method for solving the local density functional for polyatomic molecules, The Journal of Chemical Physics, 92 (1990) 508-517.

DOI: 10.1063/1.458452

Google Scholar

[25] X. Gao, Q. Zhou, J. Wang, L. Xu, W. Zeng, Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study, Applied Surface Science, 517 (2020) 146180.

DOI: 10.1016/j.apsusc.2020.146180

Google Scholar

[26] S. Yang, Z. Lan, H. Xu, G. Lei, W. Xie, Q. Gu, A First-Principles Study on Hydrogen Sensing Properties of Pristine and Mo-Doped Graphene, Journal of Nanotechnology, 2018 (2018) 1-5.

DOI: 10.1155/2018/2031805

Google Scholar

[27] L. Ma, J.-M. Zhang, K.-W. Xu, V. Ji, A first-principles study on gas sensing properties of graphene and Pd-doped graphene, Applied Surface Science, 343 (2015) 121-127.

DOI: 10.1016/j.apsusc.2015.03.068

Google Scholar

[28] Y. Qin, M. Liu, Z. Ye, A DFT study on WO3 nanowires with different orientations for NO2 sensing application, Journal of Molecular Structure, 1076 (2014) 546-553.

DOI: 10.1016/j.molstruc.2014.08.034

Google Scholar

[29] W. Yao, S. Zhou, Z. Wang, Z. Lu, C. Hou, Antioxidant behaviors of graphene in marine environment: A first-principles simulation, Applied Surface Science, 499 (2020) 143962.

DOI: 10.1016/j.apsusc.2019.143962

Google Scholar

[30] D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental Review of Graphene, ISRN Condensed Matter Physics, 2012 (2012) 501686.

DOI: 10.5402/2012/501686

Google Scholar

[31] C. Wang, Y. Fang, H. Duan, G. Liang, W. Li, D. Chen, M. Long, DFT study of CO2 adsorption properties on pristine, vacancy and doped graphenes, Solid State Communications, 337 (2021) 114436.

DOI: 10.1016/j.ssc.2021.114436

Google Scholar

[32] M. Singla, D. Sharma, N. Jaggi, Effect of transition metal (Cu and Pt) doping/ co-doping on hydrogen gas sensing capability of graphene: A DFT study, International Journal of Hydrogen Energy, 46 (2021) 16188-16201.

DOI: 10.1016/j.ijhydene.2021.02.004

Google Scholar

[33] Z. Khodadadi, Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: Insights from DFT study, Physica E: Low-dimensional Systems and Nanostructures, 99 (2018) 261-268.

DOI: 10.1016/j.physe.2018.02.022

Google Scholar

[34] A. Abbasi, J.J. Sardroodi, Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations, Applied Surface Science, 442 (2018) 368-381.

DOI: 10.1016/j.apsusc.2018.02.183

Google Scholar

[35] G. Gui, J. Li, J. Zhong, Band structure engineering of graphene by strain: First-principles calculations, Physical Review B, 78 (2008) 075435.

DOI: 10.1103/physrevb.78.075435

Google Scholar