Thermophysical Properties and Heat Transfer Characteristics of Nanorefrigerants: Some Existing Results and Areas for Further Researches

Article Preview

Abstract:

Refrigerants are commonly used as heat transfer fluid in refrigeration, heat pumps, and air conditioning systems. Nanorefrigerants are a special kind of nanofluid synthesized by dispersing nanoparticles into refrigerants or lubricant oil to improve its thermophysical and heat transfer characteristics. The optimization of the thermophysical properties of nanorefrigerant strongly depends on the successful synthesis procedures used for producing a stable suspension of nanoparticles in the refrigerants. In this study, a review was carried out to understand the synthesis of nanorefrigerant and the effect of nanoparticle size, type and concentration, temperature, base fluid type on the thermophysical properties of the nanorefrigerant. The effect of nanorefrigerant on the pressure drop and boiling heat transfer within the vapour compression refrigeration system (VCRS) was reviewed. From the review, the thermophysical properties of the nanorefrigerants affect the pressure drop and heat transfer characteristics of the vapour compression refrigeration system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-227

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Samira, B. Ahmed, Refrigerants, and their environmental impact substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. Search for an adequate refrigerant, Energy Procedia, 18 (2012) 807 – 816.

DOI: 10.1016/j.egypro.2012.05.096

Google Scholar

[2] B.O. Bolaji, Z. Huan, Ozone depletion and global warming: Case for the use of natural refrigerant –a review, Renewable and Sustainable Energy Reviews, 18 (2013) 49 – 54.

DOI: 10.1016/j.rser.2012.10.008

Google Scholar

[3] O.O. Ajayi, T.I Okolo, Y.S. Enesi, F.T. Owoyeye, E.T. Akinlabi, S.T. Akinlabi, S.A. Afolalu, Performance and energy consumption analyses of R290/Bio-based nanolubricant as a replacement for R22 refrigerant in air-conditioning system, Energy Technology, The Minerals, Metals and materials Series, Springer, (2019) 103 – 112.

DOI: 10.1007/978-3-030-06209-5_10

Google Scholar

[4] ASHRAE HVAC Fundamentals Handbook. American Society of Heating, Refrigerating and A-C Engineers, (2001).

Google Scholar

[5] R.S. Khurm, J.K. Gupta A textbook on Refrigeration and Air conditioning, S. Chang Publishing, (2006). ISBN 10: 8121927811 ISBN 13: 9788121927819.

Google Scholar

[6] S.K Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids – A review., Heat Transfer Engineering, 27:10 (2006) 3 – 19.

DOI: 10.1080/01457630600904593

Google Scholar

[7] T. Kavitha, A. Rajendran, A. Durairajan, M. Syedabuthahir, Advanced heat transfer enhancement using TiO2 water based nano fluids, International Journal of Mechanical and Industrial Engineering, 2:4 (2012) 69-71.

Google Scholar

[8] S. Z. Heris, Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol–water nanofluids, International Communication on Heat and Mass Transfer, 38:10 (2011) 1470 –1473.

DOI: 10.1016/j.icheatmasstransfer.2011.08.004

Google Scholar

[9] Y. Wei, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol-based ZnO nanofluid, Thermochimica Acta, 491:1 (2009) 92–96.

DOI: 10.1016/j.tca.2009.03.007

Google Scholar

[10] P.D. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution. Applied Energy, 86:12 (2009) 2566–2573.

DOI: 10.1016/j.apenergy.2009.03.021

Google Scholar

[11] N.A.C. Sidik, H.A. Mohammed, O.A. Alawi, S. Samion, A review on preparation methods and challenges of nanofluids, International Communication Heat Mass Transfer, 54, (2014) 115–125.

DOI: 10.1016/j.icheatmasstransfer.2014.03.002

Google Scholar

[12] K. Henderson, Y-G Park, L. Liu, A.M. Jacobi, Flow-boiling heat transfer of R134a-based nanofluids in a horizontal tube, International Journal of Heat and Mass Transfer, 53 (2010) 944-951.

DOI: 10.1016/j.ijheatmasstransfer.2009.11.026

Google Scholar

[13] M.A. Akhavan-Behabadi, M. Nasr, S. Baqeri, Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube, Experimental Thermal and Fluid Science, 58 (2014)105–111.

DOI: 10.1016/j.expthermflusci.2014.06.013

Google Scholar

[14] D. Yang, B. Sun, H. Li, X. Fan, Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube, International Journal of Refrigeration, 56 (2015) 213–223.

DOI: 10.1016/j.ijrefrig.2015.04.011

Google Scholar

[15] D.S. Kumar, R. Elansezhian, ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment, Research Article Frontiers of Mechanical Engineering, 9:1 (2014), 75 – 80.

DOI: 10.1007/s11465-014-0285-y

Google Scholar

[16] S. Bi, K. Guo, Z. Liu, Performance of domestic refrigerator using TiO2/R600a nanorefrigerant as working fluid, Energy Conservation and Management, 52:1 (2011) 733-737.

DOI: 10.1016/j.enconman.2010.07.052

Google Scholar

[17] Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization, Powder Technology, 196:2 (2009) 89–101.

DOI: 10.1016/j.powtec.2009.07.025

Google Scholar

[18] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, vol. 78:6 (2001) 718 – 720.

DOI: 10.1063/1.1341218

Google Scholar

[19] K. M. A. Haque, M. S. Hussain, S. S. Alam, S. M. S. Islam, Synthesis of nano-nickel by a wet chemical reduction method in the presence of surfactant (SDS) and a polymer (PVP), African Journal of Pure and Applied Chemistry, 4:5 (2010) 58-63.

Google Scholar

[20] A. Attabo, Thermodynamic assessment of the effect of synthetic and organic nano-fluid/particles on a vapour compression refrigeration system, MEng. Thesis, Covenant University, Nigeria, (2015).

Google Scholar

[21] Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization", Powder Technology, 196:2 (2009) 89–101.

DOI: 10.1016/j.powtec.2009.07.025

Google Scholar

[22] W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng., 29:5, (2008) 432-460.

DOI: 10.1080/01457630701850851

Google Scholar

[23] F.D.S. Marquis, L.P.F. Chibante, Improving the heat transfer of nanofluids nanolubricant with carbon nanotubes, Journal of the Minerals, Metals and Materials (JOM), 57:12 (2005) 32 – 43.

DOI: 10.1007/s11837-005-0180-4

Google Scholar

[24] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on application and challenges of nanofluids", Renewable and Sustainable Energy Reviews, 15 (2011) 1646 – 1668.

DOI: 10.1016/j.rser.2010.11.035

Google Scholar

[25] Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kin, H.S. Part, Investigation on characteristics of thermal conductivity enhancement of nanofluid, Current Applied Physics, 6 (2006) 1068-1071.

DOI: 10.1016/j.cap.2005.07.021

Google Scholar

[26] D.H. Yoo, K.S. Hong, and H.S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochimica Acta, 455:1-2 (2007) 66-69.

DOI: 10.1016/j.tca.2006.12.006

Google Scholar

[27] J.H. Lee, K.S. Hwang, S.P, Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, Effective viscosities, and thermal conductivities of aqueous nanofluids containing low volume concentration of Al2O3 nanoparticles, International Journal on Heat Mass Transfer, 51:11-12 (2008) 2651 – 2656.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

Google Scholar

[28] S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for effective thermal conductivity of nanofluids, Applied Thermal Engineering, 29:11-12 (2009) 2477 – 2483.

DOI: 10.1016/j.applthermaleng.2008.12.018

Google Scholar

[29] W. Jiang, G., Ding, H. Peng, Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants, International Journal on Thermal Science, 48:6 (2009) 1108–1115.

DOI: 10.1016/j.ijthermalsci.2008.11.012

Google Scholar

[30] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on application and challenges of nanofluids", Renewable and Sustainable Energy Reviews,15 (2011) 1646 – 1668.

DOI: 10.1016/j.rser.2010.11.035

Google Scholar

[31] I.M. Mahbubul, R. Saidur, M.A. Amalina, Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. International Communication on Heat Mass Transfer, 43 (2013) 100 – 104.

DOI: 10.1016/j.icheatmasstransfer.2013.02.004

Google Scholar

[32] I.M. Mahbubul, R. Saidur, M.A. Amalina, Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube, 5th BSME International Conference on Thermal Engineering. Procedia Engineering, 56 (2013) 323 – 329.

DOI: 10.1016/j.proeng.2013.03.126

Google Scholar

[33] C.S. Jwo, L.Y. Jeng, T.P. Teng, H. Chang, Effects of nanolubricant on performance of hydrocarbon refrigerant system, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 27 (2009) 473-1477.

DOI: 10.1116/1.3089373

Google Scholar

[34] S. Özerinç, S. Kakaç, A.G. Yazıcıoğlu, Enhanced thermal conductivity of nanofluids: A state-of-the-art review", Microfluid Nanofluid, 8:2, (2010) 145-170.

DOI: 10.1007/s10404-009-0524-4

Google Scholar

[35] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lock-Wood, E.A Grulke, Anomalous thermal conductivity enhancement in nanotube suspension, Applied Physics Letters, 79:14 (2001) 2252 – 2254.

DOI: 10.1063/1.1408272

Google Scholar

[36] R. Saleh, N. Putra, R.E. Wilbowo, W.N. Septiadi, S.P. Prakoso, Titanium dioxide nanofluid for heat transfer application, Experimental Thermal and Fluid Science, 52 (2014) 19 – 29.

DOI: 10.1016/j.expthermflusci.2013.08.018

Google Scholar

[37] O.A. Alawi, N.A.C. Sidik, The effect of temperature and particles concentration on the determination of thermo and physical properties of SWCNT nanorefrigerant, International Communication in Heat Mass Transfer, 67 (2015) 8–13.

DOI: 10.1016/j.icheatmasstransfer.2015.06.014

Google Scholar

[38] M. Ogbonnaya, O.O. Ajayi, M.A Waheed, Rheological characteristics of aluminium oxide (Al2O3) based nanolubricant", Nigerian Journal of Technology, 39:2 (2019) 424 -432.

DOI: 10.4314/njt.v39i2.12

Google Scholar

[39] W. Jiang, G. Ding, H. Peng, Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants", International Journal on Thermal Science, 48:6 (2009) 1108–1115.

DOI: 10.1016/j.ijthermalsci.2008.11.012

Google Scholar

[40] S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for effective thermal conductivity of nanofluids", Applied Thermal Engineering, 29:11-12 (2009) 2477 – 2483.

DOI: 10.1016/j.applthermaleng.2008.12.018

Google Scholar

[41] H. Chen, S. Witharana, Y. Jin, C. Kim, Y. Ding, Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology, Particuology, 7 (2009) 151–157.

DOI: 10.1016/j.partic.2009.01.005

Google Scholar

[42] S.S. Sonawane, R.S. Khedkar, K.L. Wasewar. Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. Journal of Experimental Nanoscience, 10 (2015) 310–322.

DOI: 10.1080/17458080.2013.832421

Google Scholar

[43] L. Chen, L. Liu, Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges, International Journal of Refrigeration, 36 (2013) 421-446.

DOI: 10.1016/j.ijrefrig.2012.11.010

Google Scholar

[44] R.S. Vajjha and D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International Journal on Heat Mass Transfer, 55, (2012) 4063 – 4078.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.048

Google Scholar

[45] L. Cheng, E.P. Bandarra Filho and J.R. Thome, Nanofluid two-phase flow and thermal physics; a new research frontier of nanotechnology and its challenges, Journal of Nanoscience and Nanotechnology, 8, (2008) 3315 – 3332.

DOI: 10.1166/jnn.2008.413

Google Scholar

[46] M.A. Akhavan-Behabadi, M.K., Sadoughi, M. Milad Darzi, Fakoor-Pakdaman, Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation, Experimental Thermal and Fluid Science, 66 (2015) 46–52.

DOI: 10.1016/j.expthermflusci.2015.02.027

Google Scholar

[47] Y. Xuan, and W. Roezel, Conceptions for heat transfer correlations of nanofluids, International Journal on Heat Mass Transfer, 43, (2000) 3701 – 3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[48] M. H. Esfe, S. Saedodin and A. Asadi, An empirical investigation on the dynamic viscosity of Mg(OH)2- ethylene glycol in different solid concentrations and proposing new correlation based on experimental data, International Journal of Natural and Engineering Sciences, 8:3 (2014) 29 – 34.

Google Scholar

[49] Maxwell, J.C. (1954). A Treatise on Electricity and Magnetism. Unabridged, Dover.

Google Scholar

[50] R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1.3, (1962) 187-191.

DOI: 10.1021/i160003a005

Google Scholar

[51] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78:6 (2001) 718 – 720.

DOI: 10.1063/1.1341218

Google Scholar

[52] W. Yu, S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal on Nanoparticle Research, 5:1 (2003) 167–171.

DOI: 10.1023/a:1024438603801

Google Scholar

[53] J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. Journal of Nanoparticles Research, 6:6 (2004) 577–588.

Google Scholar

[54] O.M Alawi, N., Azwadi, C. Sidik, H.A. Mohammed, A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. International Communications in Heat and Mass Transfer, 54 (2014) 81–95.

DOI: 10.1016/j.icheatmasstransfer.2014.03.001

Google Scholar

[55] Y., Xuan, Q., Li, W. Hu, Aggregation structure and thermal conductivity of nanofluids. America Institute of Chemical Engineer Journal, 49:4 (2003) 1038–1043.

DOI: 10.1002/aic.690490420

Google Scholar

[56] C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letter, 87:15 (2005) 153107.

DOI: 10.1063/1.2093936

Google Scholar

[57] A. Faizan, D. Han, Thermophysical property and heat transfer analysis of R245fa/Al2O3 nanorefrigerant, The International Journal of Engineering and Science (IJES), 5: 4 (2016) 45 – 53.

Google Scholar

[58] E.V., Timofeeva, A.N., Gavrilov, J.M., McCloskey, Y.V. Tolmachev, Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and Theory. Physics Review Journal, 76:6 (2007). 061203.

DOI: 10.1103/physreve.76.061203

Google Scholar

[59] S. A., Fadhilah, R. S. Marhamah, A.H.M. Izzat, Copper oxide nanoparticles for advanced refrigerant thermophysical properties: Mathematical modeling. Journal of Nanoparticles, (2014) 1 – 5. http://dx.doi.org/10.1155/2014/890751.

DOI: 10.1155/2014/890751

Google Scholar

[60] V., Vasu, K.R., Krishna, A.C.S. Kumar, Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids. Journal of Thermal Science, 12:2 (2008) 27– 37.

DOI: 10.2298/tsci0802027v

Google Scholar

[61] P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flowing suspensions of nano-sized particles (nanofluids), International Journal of Heat Mass Transfer, vol. 45 (2002) 855–863.

DOI: 10.1016/s0017-9310(01)00175-2

Google Scholar

[62] I.M. Mahbubul, S.S. Khaleduzzaman, R. Saidur, M.A. Amalina, Rheological behaviour of Al2O3/R141b nanorefrigerant, International Journal of Heat and Mass Transfer, 73 (2014) 118–123.

DOI: 10.1016/j.ijheatmasstransfer.2014.01.073

Google Scholar

[63] A.K. Sharma, A.K. Tiwari, and A.R. Dixit, Rheological behaviour of nanofluids: A review, Renewable Sustainable Energy Review, 53 (2016) 779–791.

DOI: 10.1016/j.rser.2015.09.033

Google Scholar

[64] Q.S. Mahdi, M.A. Theeb, H. Saed, Enhancement on the performance of refrigeration system using the nano-refrigerant, Journal of Energy and Power Engineering, 11 (2017) 237-243.

DOI: 10.17265/1934-8975/2017.04.004

Google Scholar

[65] I.M., Mahbubul, R., Saidur, M.A. Amalina, Investigation of viscosity of R123-TiO2 nanorefrigerant. International Journal of Mechanical and Materials Engineering (IJMME), 7:2 (2012) 146 – 151.

Google Scholar

[66] M.Z, Sharif, W. H., Azmi, A.A.M., Redhwan, R. Mamat, Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system, International Journal of Refrigeration, 70 (2016) 93–102.

DOI: 10.1016/j.ijrefrig.2016.06.025

Google Scholar

[67] M.A. Kedzierski, Viscosity and density of CuO nanolubricant, International Journal on Refrigeration, 35 (2012) 1997–(2002).

DOI: 10.1016/j.ijrefrig.2012.06.012

Google Scholar

[68] G., Z ̇yla, A. Witek, M. Cholewa, Viscosity of diethylene glycol-based Y2O3 nanofluids, Journal of Experimental Nanoscience, 6 (2015) 458 – 465.

DOI: 10.1080/17458080.2013.841999

Google Scholar

[69] I., Gherasim, G. Roy, and C. Tam, Experimental investigation of nanofluids in confined laminar radial flows,, International Journal of Thermal Science, 48 (2009) 1486 – 1493.

DOI: 10.1016/j.ijthermalsci.2009.01.008

Google Scholar

[70] M. Ogbonnaya, O.O Ajayi, M.A Waheed, Effect of nanoparticle size and concentration on the thermophysical properties of Al2O3 nanolubricant for use in vapour compression refrigeration system. Solid State Technology, 63:6 (2020), 7726 – 7739.

Google Scholar

[71] Einstein, AEine neue bestimmung dermoleku¨ ldimensionen. Annals Physics, 324:2 (1906) 289 – 306.

Google Scholar

[72] Brinkman, H., The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, (1952) 571-5.

Google Scholar

[73] I.M. Mahbubul, S.A. Fadhilah, R. Saidur, K.Y. Leong, M.A. Amalina, Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. International Journal of Heat and Mass Transfer, 57 (2013) 100–108.

DOI: 10.1016/j.ijheatmasstransfer.2012.10.007

Google Scholar

[74] Y, Xuan, Q. Li, Heat transfer enhancement of nanofluids. International Journal on Heat Fluid Flow, 21 (2000) 58 – 64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[75] Batchelor, G., The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal on Fluid Mechanics. 83:1, (1977) 97–117.

DOI: 10.1017/s0022112077001062

Google Scholar

[76] M. Chendrasekar, S. Surresh, A. Chandra Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34 (2010) 210 – 216.

DOI: 10.1016/j.expthermflusci.2009.10.022

Google Scholar

[77] X. Wang, X. Xu, S.U.S Choi, Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer, 13:4 (1999) 474 – 480.

DOI: 10.2514/2.6486

Google Scholar

[78] I., Gherasim, G., Roy, Tam, C. Experimental investigation of nanofluids in confined laminar radial flows. International Journal of Thermal Science, 48 (2009) 1486 – 1493.

DOI: 10.1016/j.ijthermalsci.2009.01.008

Google Scholar

[79] R. K., Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50 (2007) 2002 - (2018).

DOI: 10.1016/j.ijheatmasstransfer.2006.09.034

Google Scholar

[80] H. Peng, G. Ding, W. Jiang, H. Hu, and Y. Gao, Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube", International Journal of Refrigeration, 32:7 (2009) 1756–1764.

DOI: 10.1016/j.ijrefrig.2009.06.005

Google Scholar

[81] H. Muller – Steinhagen, K. Heck, A single friction pressure drop correction for two-phase flow in pipe, Chemical Engineering Progress, 20 (1986) 297 – 308.

DOI: 10.1016/0255-2701(86)80008-3

Google Scholar

[82] L.S. Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: A review", Renewable Sustainable Energy Review, 25 (2013) 670–686.

DOI: 10.1016/j.rser.2013.04.003

Google Scholar

[83] W. Gräfe, A simple quantum mechanical model for the contribution of electronic surface states to surface stress, strength and electro-capillarity of solids, Journal of Materials Science, 48:5 (2013) 2092 – 2103.

DOI: 10.1007/s10853-012-6983-0

Google Scholar

[84] V. Nair, P.R. Tailor, A.D. Parekh, Nanorefrigerants: A comprehensive review on its past, present, and future, International Journal of Refrigeration, 67 (2016) 290–307.

DOI: 10.1016/j.ijrefrig.2016.01.011

Google Scholar

[85] D. Reay, R. McGlen, P. Kew, Heat Pipes: Theory, Design and Applications, Butterworth-Heinemann, (2013).

Google Scholar

[86] B.P. Binks, Particles as Surfactants—Similarities and Differences, Current Opinion in Colloid, and Interface Science, 7:1–2 (2002) 21–41.

DOI: 10.1016/s1359-0294(02)00008-0

Google Scholar

[87] S. Vafaei, D. Wen, T. Borca-Tasciuc, Nanofluid surface wettability through asymptotic contact angle, Langmuir, 27:6 (2011) 2211–2218.

DOI: 10.1021/la104254a

Google Scholar

[88] H.S. Xue, J.R. Fan, Y.C. Hu, R.H. Hong, K.F. Cen, The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon, Journal on Applied Physics, 2006. https://doi.org/10.1063/1.2357705.

DOI: 10.1063/1.2357705

Google Scholar

[89] B. J. Zhu, W. L. Zhao, J. K. Li, Y. X. Guan, D.D. Li. Thermophysical Properties of Al2O3-Water Nanofluids, Materials Science Forum Trans. Tech. Publications, 688, (2011) 266 – 271.

Google Scholar

[90] M.H.U. Bhuiyana, R. Saidura, M.A. Amalina, R.M. Mostafizur, A. Islam, Effect of nanoparticles concentration and their sizes on surface tension of nanofluids, 6th BSME International Conference on Thermal Engineering (ICTE 2014) Procedia Engineering, 105, (2015) 431 – 437.

DOI: 10.1016/j.proeng.2015.05.030

Google Scholar

[91] S.S. Khaleduzzaman, I.M. Mahbubul, I.M. Shahrul, R. Saidur, Effect of particle concentration, temperature and surfactant on surface tension of nanofluids, International Communications in Heat and Mass Transfer, 49 (2013) 110–114.

DOI: 10.1016/j.icheatmasstransfer.2013.10.010

Google Scholar

[92] V.P., Zhelezny, N.N., Lukianov, O.Y., Khliyeva, A.S. Nikulina, A.V.A Melnyk, Complex investigation of the nanofluids R600a-mineral oil-Al2O3 and R600a-mineral oil-TiO2 thermophysical properties. International Journal of Refrigeration, 74 (2017) 488–504.

DOI: 10.1016/j.ijrefrig.2016.11.008

Google Scholar

[93] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME, Journal of Heat Transfer, 121 (1999) 280 – 289.

DOI: 10.1115/1.2825978

Google Scholar

[94] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11:2 (1998) 151–170.

DOI: 10.1080/08916159808946559

Google Scholar

[95] S.M.S, Murshed, K.C, Leong, C. Yang, Enhanced thermal conductivity of TiO2/water nanofluids. International Journals of Thermal Science, 44 (2005) 367 – 373.

DOI: 10.1016/j.ijthermalsci.2004.12.005

Google Scholar

[96] I.M., Shahrul, I.M. Mahbubul, S.S. Khaleduzzaman, R. Saidur, and M.F.M. Sabri, A comparative review on the specific heat of nanofluids for energy perspective, Renewable Sustainable Energy Review, 38 (2014) 88–98.

DOI: 10.1016/j.rser.2014.05.081

Google Scholar

[97] Y.Xuan, W.Roezel, , Conceptions for heat transfer correlations of nanofluids. International Journal on Heat Mass Transfer, 43 (2000) 3701 – 3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[98] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11:2 (1998) 151–170.

DOI: 10.1080/08916159808946559

Google Scholar

[99] P.K. Namburu, D.P. Kulkarni, A. Dandekar, D.K. Das, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro Nano Letter, 2 (2007) 67-71.

DOI: 10.1049/mnl:20070037

Google Scholar

[100] S. Zhou, R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Applied Physics Letters, 92 (2008) 93 – 123.

DOI: 10.1063/1.2890431

Google Scholar

[101] M.M., Elias, I.M. Shahrul, I.M. Mahbubul, R. Saidur, N.A. Rahim, Effect of different nanoparticles shapes on shell and tube heat exchanger using different baffle angle and operated with nanofluid, International Journal of Heat and Mass Transfer, 70 (2014) 289 – 297.

DOI: 10.1016/j.ijheatmasstransfer.2013.11.018

Google Scholar

[102] M.A. Kedzierski, Viscosity and density of CuO nanolubricant, International Journal on Refrigeration, 35 (2012) 1997–(2002).

DOI: 10.1016/j.ijrefrig.2012.06.012

Google Scholar

[103] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47:24 (2004b) 5181.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[104] A. Y. Cengel, A.J. Ghajar, Heat and mass transfer, fundamental and applications, 5th Edition. Mc Graw Hill Education, (2015).

Google Scholar

[105] R. Kolekar, An experimental study of the flow boiling of refrigerant-based nanofluids, University of Illinois at Urbana-Champaign (2014).

Google Scholar

[106] H. Peng, G. Ding, W. Jiang, H. Haitao, Y. Gao Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32:6 (2009) 1259–1270.

DOI: 10.1016/j.ijrefrig.2009.01.025

Google Scholar

[107] V. Trisaksri, S. Wongwises, Nucleate pooling boiling heat transfer of TiO2-R141b nanofluids, International Journal on Heat and Mass Transfer, 52 (2009) 1582 – 1588.

DOI: 10.1016/j.ijheatmasstransfer.2008.07.041

Google Scholar

[108] M., Ogbonnaya, O. O. Ajayi, M.A., Waheed, S. O., Oyedepo, A.P.I Popoola, O.M Popoola, Influence of nanoparticles deposition on surface roughness and heat transfer characteristics of nanofluids – A review, International Conference on energy and Sustainable Environment, IOP Conf. Series: Earth and Environmental Science, 331 (2019) 1 – 8.

DOI: 10.1088/1755-1315/331/1/012018

Google Scholar

[109] B. Sun, D. Yang, Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube", International Journal of Refrigeration, 38 (2014) 206–214.

DOI: 10.1016/j.ijrefrig.2013.08.020

Google Scholar

[110] M. Akhavan-Behabadi, M. Nasr, S. Baqeri, Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube, Experimental Thermal Fluid Science, 58 (2014) 105-111.

DOI: 10.1016/j.expthermflusci.2014.06.013

Google Scholar