[1]
Nandy, S., Goswami, S., Marques, A., Gaspar, D., Grey, P., Cunha, I., ... & Martins, R. (2021). Cellulose: A Contribution for the Zero e‐Waste Challenge. Advanced Materials Technologies, 2000994.
DOI: 10.1002/admt.202000994
Google Scholar
[2]
Olujobi, O. J., Ufua, D. E., Olokundun, M., & Olujobi, O. M. (2021). Conversion of organic wastes to electricity in Nigeria: legal perspective on the challenges and prospects. International Journal of Environmental Science and Technology, 1-12.
DOI: 10.1007/s13762-020-03059-3
Google Scholar
[3]
Parahita, W. T., & Yudiarti, D. (2020, August). Rice Husk Waste Exploration: From Nothing into Something Valuable. In CONVASH 2019: Proceedings of the 1st Conference of Visual Art, Design, and Social Humanities by Faculty of Art and Design, CONVASH 2019, 2 November 2019, Surakarta, Central Java, Indonesia (p.97). European Alliance for Innovation.
DOI: 10.4108/eai.2-11-2019.2294936
Google Scholar
[4]
Han, J., Li, W., Liu, D., Qin, L., Chen, W., & Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and Applied Pyrolysis, 129, 1-5.
DOI: 10.1016/j.jaap.2017.12.016
Google Scholar
[5]
Zhang, J., Liu, S., Yao, Z., Wu, S., Jiang, H., Liang, M., & Qiao, Y. (2018). Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Construction and Building Materials, 180, 605-613.
DOI: 10.1016/j.conbuildmat.2018.05.268
Google Scholar
[6]
Wang, Y., Zhang, X., Liao, W., Wu, J., Yang, X., Shui, W., ... & Peng, H. (2018). Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China. Waste Management, 77, 252-267.
DOI: 10.1016/j.wasman.2018.04.003
Google Scholar
[7]
Pandey, L. M. S., & Shukla, S. K. (2019). An insight into waste management in Australia with a focus on landfill technology and liner leak detection. Journal of Cleaner Production, 225, 1147-1154.
DOI: 10.1016/j.jclepro.2019.03.320
Google Scholar
[8]
Ramesh, M., Rajeshkumar, L., Balaji, D., & Bhuvaneswari, V. (2021). Green Composite Using Agricultural Waste Reinforcement. In Green Composites (pp.21-34). Springer, Singapore.
DOI: 10.1007/978-981-15-9643-8_2
Google Scholar
[9]
Sabir, A., Altaf, F., Batool, R., Shafiq, M., Khan, R. U., & Jacob, K. I. (2021). Agricultural Waste Absorbents for Heavy Metal Removal. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water (pp.195-228). Springer, Cham.
DOI: 10.1007/978-3-030-47400-3_8
Google Scholar
[10]
Pakravan, H. R., Jamshidi, M., & Jeddi, A. A. (2018). Combination of ground rice husk and polyvinyl alcohol fiber in cementitious composite. Journal of environmental management, 215, 116-122.
DOI: 10.1016/j.jenvman.2018.03.035
Google Scholar
[11]
Dirisu, J. O., Fayomi, O. S. I., & Oyedepo, S. O. (2020). Efficacy of Quasi Agro Binding Fibre on the Hybrid Composite Used in Advance Application. In Advances in Manufacturing Engineering (pp.565-574). Springer, Singapore.
DOI: 10.1007/978-981-15-5753-8_52
Google Scholar
[12]
Dirisu, J. O., Fayomi, O. S. I., Oyedepo, S. O., & Udoye, N. E. (2021, April). Asbestos-Free Aluminium Dross Brake Pad: A Mini Review. In IOP Conference Series: Materials Science and Engineering (Vol. 1107, No. 1, p.012034). IOP Publishing.
DOI: 10.1088/1757-899x/1107/1/012034
Google Scholar
[13]
Dirisu, J. O., Fayomi, O. S. I., Oyedepo, S. O., & Akinlabi, E. T. (2019, November). A preliminary study on chemical and physical properties of coconut shell powder as an enhancer in building ceilings for construction industry: a mini review. In IOP Conference Series: Materials Science and Engineering (Vol. 640, No. 1, p.012063). IOP Publishing.
DOI: 10.1088/1757-899x/640/1/012063
Google Scholar
[14]
Akash, R., Muraliraja, R., Suthan, R., & Shaisundaram, V. S. (2021). Synthesis and testing of aluminium composite using industrial waste as reinforcement. Materials Today: Proceedings, 37, 634-637.
DOI: 10.1016/j.matpr.2020.05.627
Google Scholar
[15]
Abdou, T.R., Junior, A.B., Espinosa, D.C.R., & Tenório, J.A.S. (2021). Recycling of polymeric composites from industrial waste by pyrolysis: Deep evaluation for carbon fibers reuse. Waste Management, 120, 1-9.
DOI: 10.1016/j.wasman.2020.11.010
Google Scholar
[16]
Girge, A., Goel, V., Gupta, G., Fuloria, D., Pati, P. R., Sharma, A., & Mishra, V. K. (2021). Industrial waste filled polymer composites–A review. Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2021.03.617
Google Scholar
[17]
Kocak, B., Fernandez, A. I., & Paksoy, H. (2021). Benchmarking study of demolition wastes with different waste materials as sensible thermal energy storage. Solar Energy Materials and Solar Cells, 219, 110777.
DOI: 10.1016/j.solmat.2020.110777
Google Scholar
[18]
Li, P., Li, X., & Li, F. (2020). A novel recycling and reuse method of iron scraps from machining process. Journal of Cleaner Production, 266, 121732.
DOI: 10.1016/j.jclepro.2020.121732
Google Scholar
[19]
Mahesh, V., Joladarashi, S., & Kulkarni, S. M. (2021). A comprehensive review on material selection for polymer matrix composites subjected to impact load. Defence Technology, 17(1), 257-277.
DOI: 10.1016/j.dt.2020.04.002
Google Scholar
[20]
Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2018). Materials selection of thermoplastic matrices for green,natural fibre composites for automotive anti-roll bar with particular emphasis on the environment. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 111-119.
DOI: 10.1007/s40684-018-0012-y
Google Scholar
[21]
Ameh, J. O., Aliu, S., & Oyediran, S. (2019). Acceptability and Use of Innovative Bamboo Products for the Construction of Residential Buildings in Nigeria. Architecture, 10(4).
DOI: 10.14716/ijtech.v10i4.2574
Google Scholar
[22]
Bahri, M., Schleibinger, H., Render, W., & Naboka, O. (2019). Removal performance of formaldehyde by ceiling tiles as sorptive passive panels. Building and Environment, 160, 106172.
DOI: 10.1016/j.buildenv.2019.106172
Google Scholar
[23]
Abden, M.J., Tao, Z., Pan, Z., George, L., & Wuhrer, R. (2020). Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation. Applied Energy, 259, 114113.
DOI: 10.1016/j.apenergy.2019.114113
Google Scholar
[24]
Chen, T., Sun, X. M., & Wu, L. (2019). High time for complete ban on asbestos use in developing countries. JAMA oncology, 5(6), 779-780.
DOI: 10.1001/jamaoncol.2019.0446
Google Scholar
[25]
Brenci, L. M., Cosereanu, C., Zeleniuc, O., Georgescu, S. V., & Fotin, A. (2018). Thermal conductivity of wood with ABS waste core sandwich composites subject to various core modifications. BioResources, 13(1), 555-568.
DOI: 10.15376/biores.13.1.555-568
Google Scholar
[26]
Temitope, A. K., Onaopemipo, A. T., Olawale, A. A., & Abayomi, O. O. (2015). Recycling of rice husk into a locally-made water-resistant particle board. Ind Eng Manage, 4(164), 2169-0316.
DOI: 10.4172/2169-0316.1000164
Google Scholar
[27]
Obam, S. O. (2012). Properties of saw-dust, paper and starch composite ceiling board. Am. J. Sci. Ind. Res, 3(5), 300-304.
DOI: 10.5251/ajsir.2012.3.5.300.304
Google Scholar
[28]
Newton, W. G., Hooker, J., Gearheart, M., Murphy, K., Wen, D. H., Fattoyev, F. J., & Li, B. A. (2014). Constraints on the symmetry energy from observational probes of the neutron star crust. The European Physical Journal A, 50(2), 1-19.
DOI: 10.1140/epja/i2014-14041-x
Google Scholar
[29]
Ekpunobi, U. E., Ohaekenyem, E. C., Ogbuagu, A. S. and Orjiako, E. N. (2015). The Mechanical Properties of Ceiling Board Produced from Waste Paper. British Journal of Applied Science and Technology, 5(2), 166-172.
DOI: 10.9734/bjast/2015/11627
Google Scholar
[30]
Clemens, H., Mayer, S. and Scheu, C. (2017). Microstructure and Properties of Engineering Materials. Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications (Second Edition). Wiley.
DOI: 10.1002/9783527684489.ch1
Google Scholar
[31]
Khoshnava, S. M., Rostami, R., Zin, R. M., Streimikiene, D., Mardani, A. and Ismail, M. (2020). The Role of Green Building Materials in Reducing Environmental and Human Health Impacts. International Journal of Environmental Research and Public Health, 17(7).
DOI: 10.3390/ijerph17072589
Google Scholar
[32]
Yamin, M., Rudito, Lisnawati, A. and Lutfi, M. (2018). A Preliminary Study of the Low Density Particle Boards Quality Using Rice Husks and Oil Palm Empty Fruit Bunch with Plastic Waste Adhesive. MATEC Web Conference, 195.
DOI: 10.1051/matecconf/201819501022
Google Scholar
[33]
Nowotna, A., Pietruszka, B. and Lisowski, P. (2019). Eco-friendly Building Materials. IOP Conf Series: Earth and Env. Sci 290.
DOI: 10.1088/1755-1315/290/1/012024
Google Scholar
[34]
Saba, N., Jawaid, M., Paridah, M. T. and Al-Othman, O. Y. (2015). A Review on Flammability of Epoxy Polymer, Cellulosic and Non-Cellulosic Fiber Reinforced Epoxy Composites. Polymers for Advanced Technologies, 27(5), 577-590.
DOI: 10.1002/pat.3739
Google Scholar
[35]
Sugranez, R., Cruz-Yusta, M., Maimol, I., Martin, F., Morales, J. and Sanchez, L. (2012). Use of industrial Waste for the Manufacturing of Sustainable Building Materials. Chemistry-Sustainibility-Energy-Materials, 5(4), 694-699.
DOI: 10.1002/cssc.201100552
Google Scholar
[36]
Dungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D. and Hadiyane, A. (2016). Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review. Asian Journal of Plant Science, 15, 42-55.
DOI: 10.3923/ajps.2016.42.55
Google Scholar
[37]
Saleh, A., Ige, H. O., Akande, F. B., Yunusa, S. U. and Atiku, M. M. (2020). Potential of Using Agricultural Waste (Orange Peel) and Empty Water Sachets/Bags in the Production of Sound Absorption Panel. IOP Conference Series: Earth and Environmental Science, 445.
DOI: 10.1088/1755-1315/445/1/012038
Google Scholar
[38]
Oyekunle, J. A. O., J. O. Dirisu, Imhade P. Okokpujie, and A. A. Asere. Determination of heat transfer properties of various PVC and Non-PVC ceiling materials available in Nigerian markets., International Journal of Mechanical Engineering and Technology (IJMET) 9, no. 8 (2018): 963-973.
Google Scholar
[39]
Onyeaju, M. C., Osarolube, E., Chukwuocha, E. O., Ekuma, C. E., & Omasheye, G. A. J. (2012). Comparison of the thermal properties of asbestos and polyvinylchloride (PVC) ceiling sheets.
DOI: 10.4236/msa.2012.34035
Google Scholar
[40]
Adepitan, J. O., Ogunsanwo, F. O., Ayanda, J. D., Okusanya, A. A., Adelaja, A. D., Oni, O. O., & Odumosu, O. O. (2019). Determination of thermal properties of some ceiling material commonly used in Ijebu-Ode, Nigeria. Nigeria Journal of Pure and Applied Physics, 9(1), 23-27.
DOI: 10.4314/njpap.v9i1.5
Google Scholar
[41]
Gesa, F. N., Atser, R. A., & Aondoakaa, S. I. (2014). Investigation of the thermal insulation properties of selected ceiling materials used in Makurdi Metropolis (Benue State-Nigeria). Am. J. Eng. Res, 3(11), 245-250.
Google Scholar