Utilization of Waste Materials for Eco-Friendly Building Ceilings: An Overview

Article Preview

Abstract:

The pioneers of the industrial revolution, and their successors, left the world’s ecosystem in a devastating state. Global warming became the consequence of activities in the industry that led to climate change, the depletion of the ozone layer, and pollution of the ecosystem. For decades now, concerned researchers have been frantically investigating methods and procedures that can help conserve the ecosystem's left to attain sustainability. The construction industry also poses its challenge as novel solutions to construct sustainable, less hazardous products to the environment and improve human health are diligently investigated and identified yearly. This paper discusses specific steps of this nature and explains how environmentally-friendly construction methods and materials produce ceiling boards.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-295

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nandy, S., Goswami, S., Marques, A., Gaspar, D., Grey, P., Cunha, I., ... & Martins, R. (2021). Cellulose: A Contribution for the Zero e‐Waste Challenge. Advanced Materials Technologies, 2000994.

DOI: 10.1002/admt.202000994

Google Scholar

[2] Olujobi, O. J., Ufua, D. E., Olokundun, M., & Olujobi, O. M. (2021). Conversion of organic wastes to electricity in Nigeria: legal perspective on the challenges and prospects. International Journal of Environmental Science and Technology, 1-12.

DOI: 10.1007/s13762-020-03059-3

Google Scholar

[3] Parahita, W. T., & Yudiarti, D. (2020, August). Rice Husk Waste Exploration: From Nothing into Something Valuable. In CONVASH 2019: Proceedings of the 1st Conference of Visual Art, Design, and Social Humanities by Faculty of Art and Design, CONVASH 2019, 2 November 2019, Surakarta, Central Java, Indonesia (p.97). European Alliance for Innovation.

DOI: 10.4108/eai.2-11-2019.2294936

Google Scholar

[4] Han, J., Li, W., Liu, D., Qin, L., Chen, W., & Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and Applied Pyrolysis, 129, 1-5.

DOI: 10.1016/j.jaap.2017.12.016

Google Scholar

[5] Zhang, J., Liu, S., Yao, Z., Wu, S., Jiang, H., Liang, M., & Qiao, Y. (2018). Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Construction and Building Materials, 180, 605-613.

DOI: 10.1016/j.conbuildmat.2018.05.268

Google Scholar

[6] Wang, Y., Zhang, X., Liao, W., Wu, J., Yang, X., Shui, W., ... & Peng, H. (2018). Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China. Waste Management, 77, 252-267.

DOI: 10.1016/j.wasman.2018.04.003

Google Scholar

[7] Pandey, L. M. S., & Shukla, S. K. (2019). An insight into waste management in Australia with a focus on landfill technology and liner leak detection. Journal of Cleaner Production, 225, 1147-1154.

DOI: 10.1016/j.jclepro.2019.03.320

Google Scholar

[8] Ramesh, M., Rajeshkumar, L., Balaji, D., & Bhuvaneswari, V. (2021). Green Composite Using Agricultural Waste Reinforcement. In Green Composites (pp.21-34). Springer, Singapore.

DOI: 10.1007/978-981-15-9643-8_2

Google Scholar

[9] Sabir, A., Altaf, F., Batool, R., Shafiq, M., Khan, R. U., & Jacob, K. I. (2021). Agricultural Waste Absorbents for Heavy Metal Removal. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water (pp.195-228). Springer, Cham.

DOI: 10.1007/978-3-030-47400-3_8

Google Scholar

[10] Pakravan, H. R., Jamshidi, M., & Jeddi, A. A. (2018). Combination of ground rice husk and polyvinyl alcohol fiber in cementitious composite. Journal of environmental management, 215, 116-122.

DOI: 10.1016/j.jenvman.2018.03.035

Google Scholar

[11] Dirisu, J. O., Fayomi, O. S. I., & Oyedepo, S. O. (2020). Efficacy of Quasi Agro Binding Fibre on the Hybrid Composite Used in Advance Application. In Advances in Manufacturing Engineering (pp.565-574). Springer, Singapore.

DOI: 10.1007/978-981-15-5753-8_52

Google Scholar

[12] Dirisu, J. O., Fayomi, O. S. I., Oyedepo, S. O., & Udoye, N. E. (2021, April). Asbestos-Free Aluminium Dross Brake Pad: A Mini Review. In IOP Conference Series: Materials Science and Engineering (Vol. 1107, No. 1, p.012034). IOP Publishing.

DOI: 10.1088/1757-899x/1107/1/012034

Google Scholar

[13] Dirisu, J. O., Fayomi, O. S. I., Oyedepo, S. O., & Akinlabi, E. T. (2019, November). A preliminary study on chemical and physical properties of coconut shell powder as an enhancer in building ceilings for construction industry: a mini review. In IOP Conference Series: Materials Science and Engineering (Vol. 640, No. 1, p.012063). IOP Publishing.

DOI: 10.1088/1757-899x/640/1/012063

Google Scholar

[14] Akash, R., Muraliraja, R., Suthan, R., & Shaisundaram, V. S. (2021). Synthesis and testing of aluminium composite using industrial waste as reinforcement. Materials Today: Proceedings, 37, 634-637.

DOI: 10.1016/j.matpr.2020.05.627

Google Scholar

[15] Abdou, T.R., Junior, A.B., Espinosa, D.C.R., & Tenório, J.A.S. (2021). Recycling of polymeric composites from industrial waste by pyrolysis: Deep evaluation for carbon fibers reuse. Waste Management, 120, 1-9.

DOI: 10.1016/j.wasman.2020.11.010

Google Scholar

[16] Girge, A., Goel, V., Gupta, G., Fuloria, D., Pati, P. R., Sharma, A., & Mishra, V. K. (2021). Industrial waste filled polymer composites–A review. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2021.03.617

Google Scholar

[17] Kocak, B., Fernandez, A. I., & Paksoy, H. (2021). Benchmarking study of demolition wastes with different waste materials as sensible thermal energy storage. Solar Energy Materials and Solar Cells, 219, 110777.

DOI: 10.1016/j.solmat.2020.110777

Google Scholar

[18] Li, P., Li, X., & Li, F. (2020). A novel recycling and reuse method of iron scraps from machining process. Journal of Cleaner Production, 266, 121732.

DOI: 10.1016/j.jclepro.2020.121732

Google Scholar

[19] Mahesh, V., Joladarashi, S., & Kulkarni, S. M. (2021). A comprehensive review on material selection for polymer matrix composites subjected to impact load. Defence Technology, 17(1), 257-277.

DOI: 10.1016/j.dt.2020.04.002

Google Scholar

[20] Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2018). Materials selection of thermoplastic matrices for green,natural fibre composites for automotive anti-roll bar with particular emphasis on the environment. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 111-119.

DOI: 10.1007/s40684-018-0012-y

Google Scholar

[21] Ameh, J. O., Aliu, S., & Oyediran, S. (2019). Acceptability and Use of Innovative Bamboo Products for the Construction of Residential Buildings in Nigeria. Architecture, 10(4).

DOI: 10.14716/ijtech.v10i4.2574

Google Scholar

[22] Bahri, M., Schleibinger, H., Render, W., & Naboka, O. (2019). Removal performance of formaldehyde by ceiling tiles as sorptive passive panels. Building and Environment, 160, 106172.

DOI: 10.1016/j.buildenv.2019.106172

Google Scholar

[23] Abden, M.J., Tao, Z., Pan, Z., George, L., & Wuhrer, R. (2020). Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation. Applied Energy, 259, 114113.

DOI: 10.1016/j.apenergy.2019.114113

Google Scholar

[24] Chen, T., Sun, X. M., & Wu, L. (2019). High time for complete ban on asbestos use in developing countries. JAMA oncology, 5(6), 779-780.

DOI: 10.1001/jamaoncol.2019.0446

Google Scholar

[25] Brenci, L. M., Cosereanu, C., Zeleniuc, O., Georgescu, S. V., & Fotin, A. (2018). Thermal conductivity of wood with ABS waste core sandwich composites subject to various core modifications. BioResources, 13(1), 555-568.

DOI: 10.15376/biores.13.1.555-568

Google Scholar

[26] Temitope, A. K., Onaopemipo, A. T., Olawale, A. A., & Abayomi, O. O. (2015). Recycling of rice husk into a locally-made water-resistant particle board. Ind Eng Manage, 4(164), 2169-0316.

DOI: 10.4172/2169-0316.1000164

Google Scholar

[27] Obam, S. O. (2012). Properties of saw-dust, paper and starch composite ceiling board. Am. J. Sci. Ind. Res, 3(5), 300-304.

DOI: 10.5251/ajsir.2012.3.5.300.304

Google Scholar

[28] Newton, W. G., Hooker, J., Gearheart, M., Murphy, K., Wen, D. H., Fattoyev, F. J., & Li, B. A. (2014). Constraints on the symmetry energy from observational probes of the neutron star crust. The European Physical Journal A, 50(2), 1-19.

DOI: 10.1140/epja/i2014-14041-x

Google Scholar

[29] Ekpunobi, U. E., Ohaekenyem, E. C., Ogbuagu, A. S. and Orjiako, E. N. (2015). The Mechanical Properties of Ceiling Board Produced from Waste Paper. British Journal of Applied Science and Technology, 5(2), 166-172.

DOI: 10.9734/bjast/2015/11627

Google Scholar

[30] Clemens, H., Mayer, S. and Scheu, C. (2017). Microstructure and Properties of Engineering Materials. Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications (Second Edition). Wiley.

DOI: 10.1002/9783527684489.ch1

Google Scholar

[31] Khoshnava, S. M., Rostami, R., Zin, R. M., Streimikiene, D., Mardani, A. and Ismail, M. (2020). The Role of Green Building Materials in Reducing Environmental and Human Health Impacts. International Journal of Environmental Research and Public Health, 17(7).

DOI: 10.3390/ijerph17072589

Google Scholar

[32] Yamin, M., Rudito, Lisnawati, A. and Lutfi, M. (2018). A Preliminary Study of the Low Density Particle Boards Quality Using Rice Husks and Oil Palm Empty Fruit Bunch with Plastic Waste Adhesive. MATEC Web Conference, 195.

DOI: 10.1051/matecconf/201819501022

Google Scholar

[33] Nowotna, A., Pietruszka, B. and Lisowski, P. (2019). Eco-friendly Building Materials. IOP Conf Series: Earth and Env. Sci 290.

DOI: 10.1088/1755-1315/290/1/012024

Google Scholar

[34] Saba, N., Jawaid, M., Paridah, M. T. and Al-Othman, O. Y. (2015). A Review on Flammability of Epoxy Polymer, Cellulosic and Non-Cellulosic Fiber Reinforced Epoxy Composites. Polymers for Advanced Technologies, 27(5), 577-590.

DOI: 10.1002/pat.3739

Google Scholar

[35] Sugranez, R., Cruz-Yusta, M., Maimol, I., Martin, F., Morales, J. and Sanchez, L. (2012). Use of industrial Waste for the Manufacturing of Sustainable Building Materials. Chemistry-Sustainibility-Energy-Materials, 5(4), 694-699.

DOI: 10.1002/cssc.201100552

Google Scholar

[36] Dungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D. and Hadiyane, A. (2016). Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review. Asian Journal of Plant Science, 15, 42-55.

DOI: 10.3923/ajps.2016.42.55

Google Scholar

[37] Saleh, A., Ige, H. O., Akande, F. B., Yunusa, S. U. and Atiku, M. M. (2020). Potential of Using Agricultural Waste (Orange Peel) and Empty Water Sachets/Bags in the Production of Sound Absorption Panel. IOP Conference Series: Earth and Environmental Science, 445.

DOI: 10.1088/1755-1315/445/1/012038

Google Scholar

[38] Oyekunle, J. A. O., J. O. Dirisu, Imhade P. Okokpujie, and A. A. Asere. Determination of heat transfer properties of various PVC and Non-PVC ceiling materials available in Nigerian markets., International Journal of Mechanical Engineering and Technology (IJMET) 9, no. 8 (2018): 963-973.

Google Scholar

[39] Onyeaju, M. C., Osarolube, E., Chukwuocha, E. O., Ekuma, C. E., & Omasheye, G. A. J. (2012). Comparison of the thermal properties of asbestos and polyvinylchloride (PVC) ceiling sheets.

DOI: 10.4236/msa.2012.34035

Google Scholar

[40] Adepitan, J. O., Ogunsanwo, F. O., Ayanda, J. D., Okusanya, A. A., Adelaja, A. D., Oni, O. O., & Odumosu, O. O. (2019). Determination of thermal properties of some ceiling material commonly used in Ijebu-Ode, Nigeria. Nigeria Journal of Pure and Applied Physics, 9(1), 23-27.

DOI: 10.4314/njpap.v9i1.5

Google Scholar

[41] Gesa, F. N., Atser, R. A., & Aondoakaa, S. I. (2014). Investigation of the thermal insulation properties of selected ceiling materials used in Makurdi Metropolis (Benue State-Nigeria). Am. J. Eng. Res, 3(11), 245-250.

Google Scholar