[1]
M.R. Valluzzi, Challenges and perspectives for the protection of masonry structures in historic centers: the role of innovative materials and techniques, RILEM Technical Letters. 1 (2016) 45–49. https://doi.org/10.21809/rilemtechlett.2016.10.
DOI: 10.21809/rilemtechlett.2016.10
Google Scholar
[2]
L. Ferrari, First-Aid and Provisional Devices in Historical Structures with Collapse Risk after Seismic Shock, Key Eng Mater. 817 (2019) 301–308. https://doi.org/10.4028/www.scientific.net/KEM.817.301.
DOI: 10.4028/www.scientific.net/kem.817.301
Google Scholar
[3]
L.C. Hollaway, Key issues in the use of fibre reinforced polymer (FRP) composites in the rehabilitation and retrofitting of concrete structures. Chapter 1, in: V.M. Karbhari, L.S. Lee (Eds.), Service Life Estimation and Extension of Civil Engineering Structures, Woodhead Publishing, 2011: p.3–74. https://doi.org/10.1533/9780857090928.1.3.
DOI: 10.1533/9780857090928.1.3
Google Scholar
[4]
ACI Committee 549, Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix and Steel-Reinforced Grout Systems for Repair and Strengthening of Concrete Structures. ACI 549.4R-20, ACI, Farmington Hills, 48331 MI, (2020).
DOI: 10.14359/51663675
Google Scholar
[5]
C.G. Papanicolaou, T.C. Triantafillou, M. Papathanasiou, K. Karlos, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading, Mater Struct. 41 (2008) 143–157. https://doi.org/10.1617/s11527-007-9226-0.
DOI: 10.1617/s11527-007-9226-0
Google Scholar
[6]
G. Loreto, L. Leardini, D. Arboleda, A. Nanni, Performance of RC Slab-Type Elements Strengthened with Fabric-Reinforced Cementitious-Matrix Composites, J Compos Constr. 18 (2014) 1–9. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000415.
DOI: 10.1061/(asce)cc.1943-5614.0000415
Google Scholar
[7]
L. Ombres, S. Verre, Flexural Strengthening of RC Beams with Steel-Reinforced Grout: Experimental and Numerical Investigation, J Compos Constr. 23 (2019) 04019035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000960.
DOI: 10.1061/(asce)cc.1943-5614.0000960
Google Scholar
[8]
M. Elghazy, A. El Refai, U. Ebead, A. Nanni, Post-repair flexural performance of corrosion-damaged beams rehabilitated with fabric-reinforced cementitious matrix (FRCM), Construction and Building Materials. 166 (2018) 732–744. https://doi.org/10.1016/j.conbuildmat.2018.01.128.
DOI: 10.1016/j.conbuildmat.2018.01.128
Google Scholar
[9]
T.C. Triantafillou, C.G. Papanicolaou, Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets, Mater Struct. 39 (2006) 93–103. https://doi.org/10.1007/s11527-005-9034-3.
DOI: 10.1007/s11527-005-9034-3
Google Scholar
[10]
T. D'Antino, F. Focacci, L.H. Sneed, C. Pellegrino, Shear strength model for RC beams with U-wrapped FRCM composites, J Compos Constr. 24 (2020). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986.
DOI: 10.1061/(asce)cc.1943-5614.0000986
Google Scholar
[11]
A. Cascardi, F. Longo, F. Micelli, M.A. Aiello, Compressive strength of confined column with Fiber Reinforced Mortar (FRM): New design-oriented-models, Construction and Building Materials. 156 (2017) 387–401. https://doi.org/10.1016/j.conbuildmat.2017.09.004.
DOI: 10.1016/j.conbuildmat.2017.09.004
Google Scholar
[12]
T. Trapko, Fibre Reinforced Cementitious Matrix confined concrete elements, Mater Des. 44 (2013) 382–391. https://doi.org/10.1016/j.matdes.2012.08.024.
DOI: 10.1016/j.matdes.2012.08.024
Google Scholar
[13]
E. Bernat-Maso, C. Escrig, C.A. Aranha, L. Gil, Experimental assessment of Textile Reinforced Sprayed Mortar strengthening system for brickwork wallettes, Constr Build Mater. 50 (2014) 226–236. https://doi.org/10.1016/j.conbuildmat.2013.09.031.
DOI: 10.1016/j.conbuildmat.2013.09.031
Google Scholar
[14]
J. Donnini, G. Maracchini, S. Lenci, V. Corinaldesi, E. Quagliarini, TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior, Construction and Building Materials. 272 (2021) 121643. https://doi.org/10.1016/j.conbuildmat.2020.121643.
DOI: 10.1016/j.conbuildmat.2020.121643
Google Scholar
[15]
L.H. Sneed, G. Baietti, G. Fraioli, C. Carloni, Compressive Behavior of Brick Masonry Columns Confined with Steel-Reinforced Grout Jackets, J Compos Constr. 23 (2019) 04019037. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000963.
DOI: 10.1061/(asce)cc.1943-5614.0000963
Google Scholar
[16]
S. De Santis, F. Roscini, G. de Felice, Full-scale tests on masonry vaults strengthened with Steel Reinforced Grout, Compos Part B. 141 (2018) 20–36. https://doi.org/10.1016/j.compositesb.2017.12.023.
DOI: 10.1016/j.compositesb.2017.12.023
Google Scholar
[17]
F.A. Kariou, S.P. Triantafyllou, D.A. Bournas, TRM strengthening of masonry arches: An experimental investigation on the effect of strengthening layout and textile fibre material, Compos Part B. 173 (2019) 106765. https://doi.org/10.1016/j.compositesb.2019.04.026.
DOI: 10.1016/j.compositesb.2019.04.026
Google Scholar
[18]
C. Carloni, Analyzing bond characteristics between composites and quasi-brittle substrates in the repair of bridges and other concrete structures, in: Advanced Composites in Bridge Construction and Repair, Elsevier, 2014: p.61–93. https://doi.org/10.1533/9780857097019.1.61.
DOI: 10.1533/9780857097019.1.61
Google Scholar
[19]
F. Focacci, T. D'Antino, C. Carloni, The role of the fiber–matrix interfacial properties on the tensile behavior of FRCM coupons, Construction and Building Materials. 265 (2020) 1–13. https://doi.org/10.1016/j.conbuildmat.2020.120263.
DOI: 10.1016/j.conbuildmat.2020.120263
Google Scholar
[20]
National Research Council, Guide for the design and construction of externally bonded fibre reinforced inorganic matrix systems for strengthening existing structures. CNR-DT 215/2018, CNR, Rome, Italy, (2018).
Google Scholar
[21]
F. Focacci, T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino, An indirect method to calibrate the interfacial cohesive material law for FRCM-concrete joints, mat and design. 128 (2017) 206–217. https://doi.org/10.1016/j.matdes.2017.04.038.
DOI: 10.1016/j.matdes.2017.04.038
Google Scholar
[22]
P. Colombi, T. D'Antino, Analytical assessment of the stress-transfer mechanism in FRCM composites, Comp Struct. 220 (2019) 961–970. https://doi.org/10.1016/j.compstruct.2019.03.074.
DOI: 10.1016/j.compstruct.2019.03.074
Google Scholar
[23]
X.B. Zhang, H. Aljewifi, J. Li, Failure Mechanism Investigation of Continuous Fibre Reinforced Cementitious Composites by Pull-out Behaviour Analysis, Proc Mater Science. 3 (2014) 1377–1382. https://doi.org/10.1016/j.mspro.2014.06.222.
DOI: 10.1016/j.mspro.2014.06.222
Google Scholar
[24]
B. Täljsten, Strengthening of concrete prisms using the plate-bonding technique, Int J Fract. 82 (1996) 253–266.
DOI: 10.1007/bf00013161
Google Scholar
[25]
A.S. Calabrese, T. D'Antino, P. Colombi, Experimental and analytical investigation of PBO FRCM-concrete bond behavior using direct and indirect shear test set-ups, Compos Struct. 267 (2021) 1–12. https://doi.org/10.1016/j.compstruct.2021.113672.
DOI: 10.1016/j.compstruct.2021.113672
Google Scholar