[1]
Linea Guida per la identificazione, la qualificazione ed il controllo di accettazione di compositi fibrorinforzati a matrice inorganica (FRCM) da utilizzarsi per il consolidamento strutturale di costruzioni esistenti, Consiglio Superiore dei Lavori Pubblici, Servizio Tecnico Centrale, Rome, Italy, (2018).
DOI: 10.3221/igf-esis.12.04
Google Scholar
[2]
A. Bellini, A.R. Tilocca, I. Frana, M. Savoia, C. Mazzotti, Environmental durability of FRCM strengthening systems and comparison with dry fabrics, Proceedings of 17th IB2MaC 2020, Kracow, Poland, 5-8 July (2020).
DOI: 10.1201/9781003098508-50
Google Scholar
[3]
C. Faella, E. Martinelli, E. Nigro, S. Paciello. Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Constr Build Mater 24 (2010) 84-93.
DOI: 10.1016/j.conbuildmat.2009.08.019
Google Scholar
[4]
L. Feo, R. Luciano, G. Misseri, L. Rovero, Irregular stone masonries: Analysis and strengthening with glass fibre reinforced composites, Compos Part B 92 (2016) 84-93.
DOI: 10.1016/j.compositesb.2016.02.038
Google Scholar
[5]
A. Incerti, F. Ferretti, C. Mazzotti, FRCM strengthening systems efficiency on the shear behavior of pre-damaged masonry panels: an experimental study, J Build Rehabil 4, 14 (2019), https://doi.org/10.1007/s41024-019-0053-9.
DOI: 10.1007/s41024-019-0053-9
Google Scholar
[6]
F. Ferretti, A. Incerti, A.R. Tilocca, C. Mazzotti, In-Plane Shear Behavior of Stone Masonry Panels Strengthened through Grout Injection and Fiber Reinforced Cementitious Matrices, Int J Archit Heritage,.
DOI: 10.1080/15583058.2019.1675803
Google Scholar
[7]
M. Harajli, H. ElKhatib, J. Tomas San-Jose, Static and cyclic out-of-plane response of masonry walls strengthened using textile-mortar system, J Mater Civil Eng 22 (2010) 1171-1180.
DOI: 10.1061/(asce)mt.1943-5533.0000128
Google Scholar
[8]
S. Babaeidarabad, F. De Caso, A. Nanni, Out-of-plane behavior of URM walls strengthened with Fabric-Reinforced Cementitious Matrix Composite, J Compos Constr 18 (2014), DOI 10.1061/(ASCE)CC.1943-5614.0000457.
DOI: 10.1061/(asce)cc.1943-5614.0000457
Google Scholar
[9]
A. Bellini, A. Incerti, M. Bovo, C. Mazzotti, Effectiveness of FRCM reinforcement applied to masonry walls subject to axial force and out-of-plane loads evaluated by experimental and numerical studies, Int J Archit Heritage 12(3) (2018) 376-394.
DOI: 10.1080/15583058.2017.1323246
Google Scholar
[10]
A. Bellini, A. Incerti, C. Mazzotti, Out-of-plane strengthening of masonry walls with FRCM composite materials, Key Eng Mat 747 (2017) 158-165.
DOI: 10.4028/www.scientific.net/kem.747.158
Google Scholar
[11]
UNI EN 1015-11, Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar, (2007).
DOI: 10.3403/01905442u
Google Scholar
[12]
ASTM E519-15, Standard test method for diagonal tension (shear) in masonry assemblages, American Society for Testing Material, (2015).
Google Scholar
[13]
RILEM TC - LUM B6, Diagonal tensile strength tests of small wall specimens, (1991).
Google Scholar
[14]
C. Mazzotti, B. Ferracuti, A. Bellini, Experimental study on masonry panels strengthened by GFRP: the role of inclination between mortar joints and GFRP sheets, Key Eng Mat 624 (2015) 559-566.
DOI: 10.4028/www.scientific.net/kem.624.559
Google Scholar
[15]
C. Calderini, S. Cattari, S. Lagomarsino. The use of the diagonal compression test to identify the shear mechanical parameters of masonry. Constr Build Mater 24 (2010) 677-685.
DOI: 10.1016/j.conbuildmat.2009.11.001
Google Scholar
[16]
M.M. Frocht, Recent advances in photoelasticity, ASME Trans. 55 (1931) 135-153.
Google Scholar