[1]
Buildings Performance Institute Europe (BPIE), 2011, Europe's buildings under the microscope. A country-by-country review of the energy performance of buildings.
Google Scholar
[2]
Koutas, L. N., Tetta, Z., Bournas, D. A., Triantafillou, T. C., Strengthening of concrete structures with textile reinforced mortars: state-of-the-art review, J. Compos. Constr. 23(1) (2019).
DOI: 10.1061/(asce)cc.1943-5614.0000882
Google Scholar
[3]
Serdar, M., Runci, A., Ye, G., Provis, J., Triantafillou, T., Habert, G., Matthys, S., Alkali activated materials–a new generation of cementless binders for concrete, Concr. Plant Int. 2 (2021) 12-15.
Google Scholar
[4]
Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., Ding, Y., An overview on the potential of geopolymers for concrete infrastructure rehabilitation, Constr. Build. Mater. 36 (2012) 1053-1058.
DOI: 10.1016/j.conbuildmat.2012.07.003
Google Scholar
[5]
Weil, M., Dombrowski, K., Buchwald, A., Life-cycle analysis of geopolymers, in: Provis, J. L., van Deventer, J. S. J. (Eds.), Geopolymers. Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, 2009, pp.194-210.
DOI: 10.1533/9781845696382.2.194
Google Scholar
[6]
Provis, J., van Deventer, J. S. J., Alkali Activated Materials, State-of-the-Art Report, RILEM TC 224-AAM, first ed., Springer Netherlands, (2014).
DOI: 10.1007/978-94-007-7672-2
Google Scholar
[7]
Davidovits, J., Geopolymers: inorganic polymeric new materials, J. Therm. Anal. Cal. 37(8) (1991) 1633-1656.
Google Scholar
[8]
Purdon, A. O., The action of alkalis on blast-furnace slag, J. Soc. Chem. Indust. 59(9) (1940) 191-202.
Google Scholar
[9]
Roy, D. M., Alkali-activated cements opportunities and challenges, Cem. Concr. Res. 29(2) (1999) 249-254.
Google Scholar
[10]
Kurtz, S., Balaguru, P., Comparison of inorganic and organic matrices for strengthening of RC beams with carbon sheets, J. Struct. Eng. 127(1) (2001) 35-42.
DOI: 10.1061/(asce)0733-9445(2001)127:1(35)
Google Scholar
[11]
Toutanji, H., Zhao, L., Deng, Y., Zhang, Y., Balaguru, P., Cyclic behavior of RC beams strengthened with carbon fiber sheets bonded by inorganic matrix, J. Mater. Civil Eng. 18(1) (2006) 28-35.
DOI: 10.1061/(asce)0899-1561(2006)18:1(28)
Google Scholar
[12]
Toutanji, H., Zhao, L., Zhang, Y., Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix. Eng. Struct, 28(4) (2006) 557-566.
DOI: 10.1016/j.engstruct.2005.09.011
Google Scholar
[13]
Toutanji, H., Deng, Y., Comparison between organic and inorganic matrices for RC beams strengthened with carbon fiber sheets, J. Compos. Constr. 11(5) (2007) 507-513.
DOI: 10.1061/(asce)1090-0268(2007)11:5(507)
Google Scholar
[14]
Papakonstantinou, C. G., Katakalos, K., 2008, Fireproof strengthening system for rehabilitation of reinforced concrete, 4th International Conference on Structural Defects and Repair, Aveiro, Portugal.
Google Scholar
[15]
Papakonstantinou, C. G., Katakalos, K., Flexural behavior of reinforced concrete beams strengthened with a hybrid inorganic matrix-steel fiber retrofit system, Struct. Eng. Mech. 31(5) (2009) 567-585.
DOI: 10.12989/sem.2009.31.5.567
Google Scholar
[16]
Katakalos, K., Papakonstantinou, C. G., Fatigue of reinforced concrete beams strengthened with steel-reinforced inorganic polymers, J. Compos. Constr. 13(2) (2009) 103-112.
DOI: 10.1061/(asce)1090-0268(2009)13:2(103)
Google Scholar
[17]
Menna, C., Asprone, D., Ferone, C., Colangelo, F., Balsamo, A., Prota, A., Cioffi, R., Manfredi, G., Use of geopolymers for composite external reinforcement of RC members, Compos. B Eng. 45(1) (2013) 1667-1676.
DOI: 10.1016/j.compositesb.2012.09.019
Google Scholar
[18]
Bencardino, F., Condello, A., Eco-friendly external strengthening system for existing reinforced concrete beams, Compos B Eng 93 (2016) 163-173.
DOI: 10.1016/j.compositesb.2016.03.022
Google Scholar
[19]
Zhang, H. Y., Lv, H. R., Kodur, V., Qi, S. L., Performance comparison of fiber sheet strengthened RC beams bonded with geopolymer and epoxy resin under ambient and fire conditions. J. Struct. Fire Eng. 9(3) (2018) 174-188.
DOI: 10.1108/jsfe-01-2017-0023
Google Scholar
[20]
Shen, X., Chen, W., Li., B., Hancock, C. M., 2019, Strengthening of Reinforced Concrete Beams with Fabric Reinforced Geopolymer Composite, 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019), Potsdam, Germany.
Google Scholar
[21]
Shen, X., Chen, W., Li, B., Hancock, C. M., Xu, Y., Flexural strengthening of reinforced concrete beams using fabric reinforced Alkali-Activated Slag matrix, J. Build. Eng. 33 (2021).
DOI: 10.1016/j.jobe.2020.101865
Google Scholar
[22]
Zhang, H. Y., Hao, X., Fan, W., Experimental study on high temperature properties of carbon fiber sheets strengthened concrete cylinders using geopolymer as adhesive, Procedia Eng. 135 (2016) 47-55.
DOI: 10.1016/j.proeng.2016.01.078
Google Scholar
[23]
Heng, K., Areemit, N., Chindaprasirt, P., Behavior of concrete cylinders confined by a ferro-geopolymer jacket in axial compression. Eng. Appl. Sci. Res. 44(2) (2017) 90-96.
Google Scholar
[24]
Fang, S., Lam, E. S. S., Wong, W. Y., Using alkali-activated slag ferrocement to strengthen corroded reinforced concrete columns, Mater. Struct. 50(1) (2017) 1-13.
DOI: 10.1617/s11527-016-0915-4
Google Scholar
[25]
Zhang, H. Y., Yan, J., Kodur, V., Cao, L., Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar, Eng. Struct. 196 (2019).
DOI: 10.1016/j.engstruct.2019.109348
Google Scholar