[1]
J.P. Broomfield, Corrosion of steel in concrete: understanding, investigation and repair, 2nd edn. Taylor and Francis, London (2006).
Google Scholar
[2]
U.K. Muhammad, A. Shamsad and J. A. Husain, Chloride-induced corrosion of steel in concrete: An overview on chloride diffusion and prediction of corrosion initiation time, International Journal of Corrosion, ID 5819202 (2017).
DOI: 10.1155/2017/5819202
Google Scholar
[3]
M.F. Montemor, A.M.P. Sim~oes, M.G.S. Ferreira, Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques, Cement & Concrete Composites. 25 (2003) 491–502.
DOI: 10.1016/s0958-9465(02)00089-6
Google Scholar
[4]
Q. Li, H. Geng, Y. Huang, Z. Shui, Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study, Construction and Building Materials. 101 (2015) 184–192.
DOI: 10.1016/j.conbuildmat.2015.10.076
Google Scholar
[5]
J. Ahlstrom, Corrosion of steel in concrete at various moisture and chloride levels, Master thesis, Lund University (2014).
Google Scholar
[6]
T.A. Soylev, R. Francois, Quality of steel-concrete interface and corrosion of reinforcing steel, Cement and Concrete Research. 33 (2003) 1407–1415.
DOI: 10.1016/s0008-8846(03)00087-5
Google Scholar
[7]
C.L. Page, Initiation of chloride-induced corrosion of steel in concrete: role of the interfacial zone, Material and Corrosion. 60 (2009) 586–592.
DOI: 10.1002/maco.200905278
Google Scholar
[8]
R.J. Zhang, A. Castel, R. Francois, Influence of steel concrete interface defects owing to the top-bar effect on the chloride-induced corrosion of reinforcement, Mag Concr Res. 63 (2011) 773–781.
DOI: 10.1680/macr.2011.63.10.773
Google Scholar
[9]
M.D.A. Thomas, P.B. Bamforth, Modelling Chloride diffusion in concrete: effect of fly ash and slag, Cement Concrete Res. 29 (1999) 487–95.
DOI: 10.1016/s0008-8846(98)00192-6
Google Scholar
[10]
J. Bijen, Benefits of slag and fly ash, Constr Build Mater.10 (1996) 309–14.
Google Scholar
[11]
P.J. Tumidajski, Boltzmann-matano analysis of chloride diffusion into blended cement concrete, J Mater Civil Eng. 8(1996) 195–200.
DOI: 10.1061/(asce)0899-1561(1996)8:4(195)
Google Scholar
[12]
S.Y.N. Chan, X. Ji, Comparative study of initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes, Cement Concrete Composite. 21(1999) 293–300.
DOI: 10.1016/s0958-9465(99)00010-4
Google Scholar
[13]
V.M. Malhotra, Role of supplementary cementing materials in reducing greenhouse gas emissions. CANMET report MTL 98-03. Canada: OP&J (1998).
Google Scholar
[14]
ASTM C618-17a Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM: West Conshohocken, PA, USA (2017).
DOI: 10.1520/c0618-00
Google Scholar
[15]
C.V. Nguyen, P. Lambert, Q.H. Tran, Effect of Vietnamese fly ash on selected physical properties, durability and probability of corrosion of steel in concrete. Materials 12 (2019) 593.
DOI: 10.3390/ma12040593
Google Scholar
[16]
M. Thomas, M. Shehata, S. Shashiprakash, The use of fly ash in concrete: classification by composition, Cement and Concrete Aggregate. 12 (1999) 105–110.
DOI: 10.1520/cca10423j
Google Scholar
[17]
Fly Ash for Cement Concrete—Resource for High Strength and Durability of Structures at Lower Cost; NTPC limited: New Delhi, India (2013).
Google Scholar
[18]
Use of Fly Ash to Achieve Enhanced Sustainability in Construction. Available online: http://www.adaa.asn.au/uploads/default/files/adaa_technical_note_11.pdf (accessed on 10 January 2019).
Google Scholar
[19]
R. Mohamad, Study on Utilization of Fly Ash as a Replacement of Cement and Fine Aggregates in Concrete. Bachelor Thesis, Charles Darwin University, Casuarina, NT, Australia (2015).
Google Scholar
[20]
Y.S. Choi, J.G. Kim, K.M. Lee, Corrosion behaviour of steel bar embedded in fly ash concrete. Corrosion Science. 48 (2006) 1733–45.
DOI: 10.1016/j.corsci.2005.05.019
Google Scholar
[21]
P. Chindaprasirt, C. Chotithanorm, H.T. Cao, V. Sirivivatnanon, Influence of fly ash fineness on the chloride penetration of concrete, Const Build Mater. 21(2007) 356–61.
DOI: 10.1016/j.conbuildmat.2005.08.010
Google Scholar
[22]
T.H. Ha, S. Muralidharan, J.H. Bae, Y.C. Ha, H.G. Lee, K.W. Park, et al, Accelerated short-term techniques to evaluate the corrosion performance of steel in fly ash blended concrete, Build Enviro. 42 (2007) 78–85.
DOI: 10.1016/j.buildenv.2005.08.019
Google Scholar
[23]
C.V. Nguyen, P. Lambert, V.N. Bui, Effect of locally source pozzolan on corrosion resistance of steel in reinforced concrete beams, International Journal of Civil Engineering. 18 (2020) 619–630.
DOI: 10.1007/s40999-019-00492-5
Google Scholar
[24]
V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan, Influence of activated fly ash on corrosion-resistance and strength of concrete. Cement Concr Compos. 25 (2003) 673–680.
DOI: 10.1016/s0958-9465(02)00068-9
Google Scholar
[25]
E. Guneyisi, T. Ozturan, M. Gesog˘lu, A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions, Cem Concr Compos. 27 (2005) 449–61.
DOI: 10.1016/j.cemconcomp.2004.05.006
Google Scholar
[26]
R.B, Ahmet, B.T. Ilker, Influence of fly ash on corrosion resistance and chloride ion permeability of concrete, Construction and Building Materials. 31 (2012) 258–264.
DOI: 10.1016/j.conbuildmat.2011.12.106
Google Scholar
[27]
C.Q. Lye, S. G. Gurmel, K. D. Ravindra, Carbonation resistance of GGBS concrete, Magazine of Concrete Research. 68 (2006) 936–969.
DOI: 10.1680/jmacr.15.00449
Google Scholar
[28]
C. Shi, J. Qian, High performance cementing materials from industrial slags—a review, Resour. Conserv. Recycl. 29 (2000) 195–207.
DOI: 10.1016/s0921-3449(99)00060-9
Google Scholar
[29]
A. Cheng, R. Huang, J.K. Wu, C.H. Chen, Influence of GGBS on durability and corrosion behaviour of reinforced concrete, Materials Chemistry and Physics. 93 (2005) 404–411.
DOI: 10.1016/j.matchemphys.2005.03.043
Google Scholar
[30]
K.G. Babu, V. S. R. Kumar, Efficiency of GGBS in concrete. Cement and Concrete Research 30 (2000) 1031- 1036.
DOI: 10.1016/s0008-8846(00)00271-4
Google Scholar
[31]
H.W. Songa, V. Saraswathy, Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview, Journal of Hazardous Materials. 16 (2006) 226-233.
DOI: 10.1016/j.jhazmat.2006.07.022
Google Scholar
[32]
J. Daube, R. Bakker, Portland blast-furnace slag cement: a review, in: Blended Cement, G. Frohnsdorff (Ed.), ASTM Sp. Tech. Publ. No. 897 (1983).
DOI: 10.1520/stp36388s
Google Scholar
[33]
V.M. Malhotra, Properties of fresh and hardened concrete incorporating ground granulated blast furnace slag, in: V.M. Malhotra (Ed.), Supplementary Cementing Materials for Concrete, Minister of Supply and Services, Canada (1987) 291–336.
DOI: 10.4095/307077
Google Scholar
[34]
M. Hulusi Ozkul, Unal Anil Dogan, Ali Raif Saglam, Nazmiye Parlak, Corrosion Resistance of GGBS Concrete, 11th International Conference on Durability of Building Materials and Components Istanbul Turkey May 11-14, (2008).
Google Scholar
[35]
V. Correia, J. G. Ferreira, L. Tang, A. Lindvall, Effect of the addition of GGBS on the frost scaling and chloride migration resistance of concrete, Appl. Sci. 10 (2020) 3940.
DOI: 10.3390/app10113940
Google Scholar
[36]
TCVN 3106-1993: Fresh heavyweight concrete: Method for slump test. Ministry of Science and Technology. Vietnam (1993).
Google Scholar
[37]
TCVN 3118:1993: Heavyweight concrete - Method for determination of compressive strength. Ministry of Science and Technology. Vietnam (1993).
Google Scholar
[38]
ASTM C1202- Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. ASTM: West Conshohocken, PA, USA (2012).
Google Scholar
[39]
M. Arezoumandi, J.S. Volz, Effect of fly ash replacement level on the shear strength of high -volume fly ash concrete beams, J. Clean. Prod. 59 (2013) 120–130.
DOI: 10.1016/j.jclepro.2013.06.043
Google Scholar
[40]
J. Zhu, Q. Zhong, G. Chen, D. Li, Effect of particlesize of blast furnace slag on properties of portland cement. Procedia Engineering, 27 (2012) 231 – 236.
DOI: 10.1016/j.proeng.2011.12.448
Google Scholar
[41]
A.R. Boga, I.B. Topçu, Influence of fly ash on corrosion resistance and chloride ion permeability of concrete, Construction and Building Materials. 31 (2012) 258–264.
DOI: 10.1016/j.conbuildmat.2011.12.106
Google Scholar
[42]
Q. Yuan, C. Shi, G.D. Schutter, K. Audenaert, D. Deng, Chloride binding of cement-based materials subjected to external chloride environment – a review, Constr Build Mater. 23(2009) 1–13.
DOI: 10.1016/j.conbuildmat.2008.02.004
Google Scholar
[43]
I.B. Topcu, A.R. Boga, F.O. Hocaoglu, Modelling corrosion currents of reinforced concrete using ANN. Automat Constr. 18 (2009)145–52.
Google Scholar
[44]
G. Li, A. Zhang, Z. Song, S. Liu, J. Zhang, Ground granulated blast furnace slag effect on the durability of ternary cementitious system exposed to combined attack of chloride and sulfate, Constr. Build. Mater. 158 (2018) 640–648.
DOI: 10.1016/j.conbuildmat.2017.10.062
Google Scholar
[45]
M.D.A. Thomas, R.D. Hooton, A. Scott, H. Zibara, The effect of supplementary cementitious materials on chloride binding in hardened cement paste, Cem. Concr. Res. 42(2012) 1–7.
DOI: 10.1016/j.cemconres.2011.01.001
Google Scholar