Durability of Mortars Manufactured with Low-Carbon Binders Exposed to Calcium Chloride-Based De-Icing Salts

Article Preview

Abstract:

Calcium chloride is one of the main de-icing salts for removing snow and ice from roads, infrastructures and service areas. It is well known that reinforced concrete structures, if exposed to calcium chloride, can suffer from severe damages due to both corrosion of steel reinforcement and chemical attack of the cement paste. This paper aims at evaluating the resistance to chemical attack of mortars manufactured with different low-carbon binders (alkali activated slag cements, calcium sulphoaluminate cement-based blends, high volume ultrafine fly ashes cements) in presence of CaCl2-based de-icing salts in cold weather (temperature about 4°C). Results indicated that alkali activated slag-based mortars are quasi-immune to calcium chloride attack due to their mineralogical composition. On the contrary, calcium sulphoaluminate-based blends show the total loss of binding capacity, especially when calcium sulphoaluminate cement is used with gypsum and Portland cement. Finally, the partial substitution of Portland cement with ultrafine fly ash strongly reduces the mass change and the strength loss of mortars submerged in 30 wt.% CaCl2 solutions due to the strong reduction of calcium hydroxide responsible for the calcium oxychloride formation in the cement paste.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-160

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Fay, X. Shi, Environmental impacts of chemicals for snow and ice control: State of the knowledge, Water. Air. Soil Pollut. 223 (2012) 2751–2770. https://doi.org/10.1007/s11270-011-1064-6.

DOI: 10.1007/s11270-011-1064-6

Google Scholar

[2] US Geological Survey, US Department of Interior, Mineral Yearbook - Metals and Minerals - From 1950 to 2017, (n.d.).

Google Scholar

[3] EUSalt (European Salt Producers'Association), Environmental impact of winter maintenance with salt, (2021).

Google Scholar

[4] K. Amini, H. Ceylan, P.C. Taylor, Effect of finishing practices on surface structure and salt-scaling resistance of concrete, Cem. Concr. Compos. 104 (2019) 103345. https://doi.org/10.1016/j.cemconcomp.2019.103345.

DOI: 10.1016/j.cemconcomp.2019.103345

Google Scholar

[5] Z. Sun, G.W. Scherer, Effect of air voids on salt scaling and internal freezing, Cem. Concr. Res. 40 (2010) 260–270. https://doi.org/10.1016/j.cemconres.2009.09.027.

DOI: 10.1016/j.cemconres.2009.09.027

Google Scholar

[6] K. Amini, K. Cetin, H. Ceylan, P.C. Taylor, A summary of factors affecting concrete salt-scaling performance, ACI Mater. J. 117 (2020) 53–62. https://doi.org/10.14359/51724614.

Google Scholar

[7] L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R.B. Polder, Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, Wiley WCH, (2013).

DOI: 10.1002/9783527651696

Google Scholar

[8] H. Bohni, Corrosion in reinforced concrete structures, Woodhead Publishing Limited, Cambridge (England), (2005).

Google Scholar

[9] S. Chatterji, Mechanism of the CaCl2 attack on portland cement concrete, Cem. Concr. Res. 8 (1978) 461–467. https://doi.org/10.1016/0008-8846(78)90026-1.

DOI: 10.1016/0008-8846(78)90026-1

Google Scholar

[10] M. Collepardi, L. Coppola, C. Pistolesi, Durability of Concrete Structures Exposed to CaCl2 Based Deicing Salts, in: Proc. 3rd CANMET/ACI Int. Conf., Nice, France, 1994: p.107–120.

DOI: 10.14359/4543

Google Scholar

[11] S. Monosi, A. Alvera, M. Collepardi, Chemical attack of calcium chloride on the portland cement paste, Cem. 86 (1989) 97–104.

Google Scholar

[12] S. Monosi, M. Collepardi, Research on 3CaO.CaCl2.15H2O identified in concretes damaged by CaCl2 attack, Cem. 87 (1990) 3–8.

Google Scholar

[13] P. Suraneni, V.J. Azad, O.B. Isgor, J. Weiss, Role of Supplementary Cementitious Material Type in the Mitigation of Calcium Oxychloride Formation in Cementitious Pastes, J. Mater. Civ. Eng. 30 (2018) 04018248. https://doi.org/10.1061/(asce)mt.1943-5533.0002425.

DOI: 10.1061/(asce)mt.1943-5533.0002425

Google Scholar

[14] C. Qiao, P. Suraneni, J. Weiss, Phase diagram and volume change of the Ca(OH) 2 -CaCl 2 -H 2 O system for varying Ca(OH) 2 /CaCl 2 molar ratios, J. Mater. Civ. Eng. 30 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002145.

DOI: 10.1061/(asce)mt.1943-5533.0002145

Google Scholar

[15] P. Suraneni, J. Monical, E. Unal, Y. Farnam, J. Weiss, Calcium oxychloride formation potential in cementitious pastes exposed to blends of deicing salt, ACI Mater. J. 114 (2017) 631–641. https://doi.org/10.14359/51689607.

DOI: 10.14359/51689607

Google Scholar

[16] F. Traore, C. Jones, S. Ramanathan, P. Suraneni, W.M. Hale, Using compressive strength and mass change to verify the calcium oxychloride threshold in cementitious pastes with fly ash, Constr. Build. Mater. 296 (2021) 123640. https://doi.org/10.1016/j.conbuildmat.2021.123640.

DOI: 10.1016/j.conbuildmat.2021.123640

Google Scholar

[17] C. Qiao, P. Suraneni, J. Weiss, Flexural strength reduction of cement pastes exposed to CaCl 2 solutions, Cem. Concr. Compos. 86 (2018) 297–305. https://doi.org/10.1016/j.cemconcomp.2017.11.021.

DOI: 10.1016/j.cemconcomp.2017.11.021

Google Scholar

[18] K. Peterson, G. Julio-Betancourt, L. Sutter, R.D. Hooton, D. Johnston, Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5 C, Cem. Concr. Res. 45 (2013) 79–90. https://doi.org/10.1016/j.cemconres.2013.01.001.

DOI: 10.1016/j.cemconres.2013.01.001

Google Scholar

[19] L. Sutter, K. Peterson, S. Touton, T. Van Dam, D. Johnston, Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution, Cem. Concr. Res. 36 (2006) 1533–1541. https://doi.org/10.1016/j.cemconres.2006.05.022.

DOI: 10.1016/j.cemconres.2006.05.022

Google Scholar

[20] C. Jones, S. Ramanathan, P. Suraneni, W.M. Hale, Calcium oxychloride: A critical review of the literature surrounding the formation, deterioration, testing procedures, and recommended mitigation techniques, Cem. Concr. Compos. 113 (2020) 103663. https://doi.org/10.1016/j.cemconcomp.2020.103663.

DOI: 10.1016/j.cemconcomp.2020.103663

Google Scholar

[21] J.L. Provis, Alkali-activated materials, Cem. Concr. Res. 114 (2018) 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.

Google Scholar

[22] L. Coppola, D. Coffetti, E. Crotti, G. Gazzaniga, T. Pastore, The durability of one-part alkali activated slag-based mortars in different environments, Sustainability. 12 (2020) 3561.

DOI: 10.3390/su12093561

Google Scholar

[23] F. Ameri, P. Shoaei, S.A. Zareei, B. Behforouz, Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars, Constr. Build. Mater. 222 (2019) 49–63. https://doi.org/10.1016/j.conbuildmat.2019.06.079.

DOI: 10.1016/j.conbuildmat.2019.06.079

Google Scholar

[24] D. Koumpouri, I. Karatasios, V. Psycharis, I.G. Giannakopoulos, M.S. Katsiotis, V. Kilikoglou, Effect of clinkering conditions on phase evolution and microstructure of Belite Calcium-Sulpho-Aluminate cement clinker, Cem. Concr. Res. 147 (2021) 106529. https://doi.org/10.1016/j.cemconres.2021.106529.

DOI: 10.1016/j.cemconres.2021.106529

Google Scholar

[25] L. Coppola, D. Coffetti, E. Crotti, T. Pastore, CSA-based Portland-free binders to manufacture sustainable concretes for jointless slabs on ground, Constr. Build. Mater. 187 (2018) 691–698. https://doi.org/10.1016/j.conbuildmat.2018.07.221.

DOI: 10.1016/j.conbuildmat.2018.07.221

Google Scholar

[26] V.M. Agrawal, P. Savoikar, A Comprehensive Review of Ultra-Fine Materials as Supplementary Cementitious Materials in Cement Concrete, in: B.B. Das, S. V Nanukuttan, A.K. Patnaik, N.S. Panandikar (Eds.), Recent Trends Civ. Eng., Springer Singapore, Singapore, 2021: p.171–176.

DOI: 10.1007/978-981-15-8293-6_14

Google Scholar

[27] A. Mohan, K.M. Mini, Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS, Constr. Build. Mater. 171 (2018) 919–928. https://doi.org/10.1016/j.conbuildmat.2018.03.186.

DOI: 10.1016/j.conbuildmat.2018.03.186

Google Scholar

[28] L. Coppola, D. Coffetti, E. Crotti, S. Candamano, F. Crea, G. Gazzaniga, T. Pastore, The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes, Constr. Build. Mater. 248 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118682.

DOI: 10.1016/j.conbuildmat.2020.118682

Google Scholar

[29] A. D'Alessandro, D. Coffetti, E. Crotti, L. Coppola, A. Meoni, F. Ubertini, Self-Sensing Properties of Green Alkali-Activated Binders with Carbon-Based Nanoinclusions, Sustainability. 12 (2020). https://doi.org/10.3390/su12239916.

DOI: 10.3390/su12239916

Google Scholar

[30] L. Coppola, D. Coffetti, E. Crotti, R. Dell'Aversano, G. Gazzaniga, T. Pastore, Influence of Lithium Carbonate and Sodium Carbonate on Physical and Elastic Properties and on Carbonation Resistance of Calcium Sulphoaluminate-Based Mortars, Appl. Sci. 10 (2019) 176. https://doi.org/10.3390/app10010176.

DOI: 10.3390/app10010176

Google Scholar

[31] M. Cabrini, S. Lorenzi, L. Coppola, D. Coffetti, T. Pastore, Inhibition effect of tartrate ions on the localized corrosion of steel in pore solution at different chloride concentration, Buildings. 10 (2020) 105. https://doi.org/10.3390/buildings10060105.

DOI: 10.3390/buildings10060105

Google Scholar

[32] Y. Farnam, S. Dick, A. Wiese, J. Davis, D. Bentz, J. Weiss, The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials, Cem. Concr. Compos. 64 (2015) 1–15. https://doi.org/10.1016/j.cemconcomp.2015.09.006.

DOI: 10.1016/j.cemconcomp.2015.09.006

Google Scholar

[33] P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on compressive strength and pore size of blended cement paste, Cem. Concr. Compos. 27 (2005) 425–428. https://doi.org/10.1016/j.cemconcomp.2004.07.003.

DOI: 10.1016/j.cemconcomp.2004.07.003

Google Scholar

[34] P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on microstructure of blended cement paste, Constr. Build. Mater. 21 (2007) 1534–1541. https://doi.org/10.1016/j.conbuildmat.2005.12.024.

DOI: 10.1016/j.conbuildmat.2005.12.024

Google Scholar

[35] R.J. Myers, S.A. Bernal, J.L. Provis, Phase diagrams for alkali-activated slag binders, Cem. Concr. Res. 95 (2017) 30–38. https://doi.org/10.1016/j.cemconres.2017.02.006.

DOI: 10.1016/j.cemconres.2017.02.006

Google Scholar