[1]
L. Fay, X. Shi, Environmental impacts of chemicals for snow and ice control: State of the knowledge, Water. Air. Soil Pollut. 223 (2012) 2751–2770. https://doi.org/10.1007/s11270-011-1064-6.
DOI: 10.1007/s11270-011-1064-6
Google Scholar
[2]
US Geological Survey, US Department of Interior, Mineral Yearbook - Metals and Minerals - From 1950 to 2017, (n.d.).
Google Scholar
[3]
EUSalt (European Salt Producers'Association), Environmental impact of winter maintenance with salt, (2021).
Google Scholar
[4]
K. Amini, H. Ceylan, P.C. Taylor, Effect of finishing practices on surface structure and salt-scaling resistance of concrete, Cem. Concr. Compos. 104 (2019) 103345. https://doi.org/10.1016/j.cemconcomp.2019.103345.
DOI: 10.1016/j.cemconcomp.2019.103345
Google Scholar
[5]
Z. Sun, G.W. Scherer, Effect of air voids on salt scaling and internal freezing, Cem. Concr. Res. 40 (2010) 260–270. https://doi.org/10.1016/j.cemconres.2009.09.027.
DOI: 10.1016/j.cemconres.2009.09.027
Google Scholar
[6]
K. Amini, K. Cetin, H. Ceylan, P.C. Taylor, A summary of factors affecting concrete salt-scaling performance, ACI Mater. J. 117 (2020) 53–62. https://doi.org/10.14359/51724614.
Google Scholar
[7]
L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R.B. Polder, Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, Wiley WCH, (2013).
DOI: 10.1002/9783527651696
Google Scholar
[8]
H. Bohni, Corrosion in reinforced concrete structures, Woodhead Publishing Limited, Cambridge (England), (2005).
Google Scholar
[9]
S. Chatterji, Mechanism of the CaCl2 attack on portland cement concrete, Cem. Concr. Res. 8 (1978) 461–467. https://doi.org/10.1016/0008-8846(78)90026-1.
DOI: 10.1016/0008-8846(78)90026-1
Google Scholar
[10]
M. Collepardi, L. Coppola, C. Pistolesi, Durability of Concrete Structures Exposed to CaCl2 Based Deicing Salts, in: Proc. 3rd CANMET/ACI Int. Conf., Nice, France, 1994: p.107–120.
DOI: 10.14359/4543
Google Scholar
[11]
S. Monosi, A. Alvera, M. Collepardi, Chemical attack of calcium chloride on the portland cement paste, Cem. 86 (1989) 97–104.
Google Scholar
[12]
S. Monosi, M. Collepardi, Research on 3CaO.CaCl2.15H2O identified in concretes damaged by CaCl2 attack, Cem. 87 (1990) 3–8.
Google Scholar
[13]
P. Suraneni, V.J. Azad, O.B. Isgor, J. Weiss, Role of Supplementary Cementitious Material Type in the Mitigation of Calcium Oxychloride Formation in Cementitious Pastes, J. Mater. Civ. Eng. 30 (2018) 04018248. https://doi.org/10.1061/(asce)mt.1943-5533.0002425.
DOI: 10.1061/(asce)mt.1943-5533.0002425
Google Scholar
[14]
C. Qiao, P. Suraneni, J. Weiss, Phase diagram and volume change of the Ca(OH) 2 -CaCl 2 -H 2 O system for varying Ca(OH) 2 /CaCl 2 molar ratios, J. Mater. Civ. Eng. 30 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002145.
DOI: 10.1061/(asce)mt.1943-5533.0002145
Google Scholar
[15]
P. Suraneni, J. Monical, E. Unal, Y. Farnam, J. Weiss, Calcium oxychloride formation potential in cementitious pastes exposed to blends of deicing salt, ACI Mater. J. 114 (2017) 631–641. https://doi.org/10.14359/51689607.
DOI: 10.14359/51689607
Google Scholar
[16]
F. Traore, C. Jones, S. Ramanathan, P. Suraneni, W.M. Hale, Using compressive strength and mass change to verify the calcium oxychloride threshold in cementitious pastes with fly ash, Constr. Build. Mater. 296 (2021) 123640. https://doi.org/10.1016/j.conbuildmat.2021.123640.
DOI: 10.1016/j.conbuildmat.2021.123640
Google Scholar
[17]
C. Qiao, P. Suraneni, J. Weiss, Flexural strength reduction of cement pastes exposed to CaCl 2 solutions, Cem. Concr. Compos. 86 (2018) 297–305. https://doi.org/10.1016/j.cemconcomp.2017.11.021.
DOI: 10.1016/j.cemconcomp.2017.11.021
Google Scholar
[18]
K. Peterson, G. Julio-Betancourt, L. Sutter, R.D. Hooton, D. Johnston, Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5 C, Cem. Concr. Res. 45 (2013) 79–90. https://doi.org/10.1016/j.cemconres.2013.01.001.
DOI: 10.1016/j.cemconres.2013.01.001
Google Scholar
[19]
L. Sutter, K. Peterson, S. Touton, T. Van Dam, D. Johnston, Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution, Cem. Concr. Res. 36 (2006) 1533–1541. https://doi.org/10.1016/j.cemconres.2006.05.022.
DOI: 10.1016/j.cemconres.2006.05.022
Google Scholar
[20]
C. Jones, S. Ramanathan, P. Suraneni, W.M. Hale, Calcium oxychloride: A critical review of the literature surrounding the formation, deterioration, testing procedures, and recommended mitigation techniques, Cem. Concr. Compos. 113 (2020) 103663. https://doi.org/10.1016/j.cemconcomp.2020.103663.
DOI: 10.1016/j.cemconcomp.2020.103663
Google Scholar
[21]
J.L. Provis, Alkali-activated materials, Cem. Concr. Res. 114 (2018) 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Google Scholar
[22]
L. Coppola, D. Coffetti, E. Crotti, G. Gazzaniga, T. Pastore, The durability of one-part alkali activated slag-based mortars in different environments, Sustainability. 12 (2020) 3561.
DOI: 10.3390/su12093561
Google Scholar
[23]
F. Ameri, P. Shoaei, S.A. Zareei, B. Behforouz, Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars, Constr. Build. Mater. 222 (2019) 49–63. https://doi.org/10.1016/j.conbuildmat.2019.06.079.
DOI: 10.1016/j.conbuildmat.2019.06.079
Google Scholar
[24]
D. Koumpouri, I. Karatasios, V. Psycharis, I.G. Giannakopoulos, M.S. Katsiotis, V. Kilikoglou, Effect of clinkering conditions on phase evolution and microstructure of Belite Calcium-Sulpho-Aluminate cement clinker, Cem. Concr. Res. 147 (2021) 106529. https://doi.org/10.1016/j.cemconres.2021.106529.
DOI: 10.1016/j.cemconres.2021.106529
Google Scholar
[25]
L. Coppola, D. Coffetti, E. Crotti, T. Pastore, CSA-based Portland-free binders to manufacture sustainable concretes for jointless slabs on ground, Constr. Build. Mater. 187 (2018) 691–698. https://doi.org/10.1016/j.conbuildmat.2018.07.221.
DOI: 10.1016/j.conbuildmat.2018.07.221
Google Scholar
[26]
V.M. Agrawal, P. Savoikar, A Comprehensive Review of Ultra-Fine Materials as Supplementary Cementitious Materials in Cement Concrete, in: B.B. Das, S. V Nanukuttan, A.K. Patnaik, N.S. Panandikar (Eds.), Recent Trends Civ. Eng., Springer Singapore, Singapore, 2021: p.171–176.
DOI: 10.1007/978-981-15-8293-6_14
Google Scholar
[27]
A. Mohan, K.M. Mini, Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS, Constr. Build. Mater. 171 (2018) 919–928. https://doi.org/10.1016/j.conbuildmat.2018.03.186.
DOI: 10.1016/j.conbuildmat.2018.03.186
Google Scholar
[28]
L. Coppola, D. Coffetti, E. Crotti, S. Candamano, F. Crea, G. Gazzaniga, T. Pastore, The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes, Constr. Build. Mater. 248 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118682.
DOI: 10.1016/j.conbuildmat.2020.118682
Google Scholar
[29]
A. D'Alessandro, D. Coffetti, E. Crotti, L. Coppola, A. Meoni, F. Ubertini, Self-Sensing Properties of Green Alkali-Activated Binders with Carbon-Based Nanoinclusions, Sustainability. 12 (2020). https://doi.org/10.3390/su12239916.
DOI: 10.3390/su12239916
Google Scholar
[30]
L. Coppola, D. Coffetti, E. Crotti, R. Dell'Aversano, G. Gazzaniga, T. Pastore, Influence of Lithium Carbonate and Sodium Carbonate on Physical and Elastic Properties and on Carbonation Resistance of Calcium Sulphoaluminate-Based Mortars, Appl. Sci. 10 (2019) 176. https://doi.org/10.3390/app10010176.
DOI: 10.3390/app10010176
Google Scholar
[31]
M. Cabrini, S. Lorenzi, L. Coppola, D. Coffetti, T. Pastore, Inhibition effect of tartrate ions on the localized corrosion of steel in pore solution at different chloride concentration, Buildings. 10 (2020) 105. https://doi.org/10.3390/buildings10060105.
DOI: 10.3390/buildings10060105
Google Scholar
[32]
Y. Farnam, S. Dick, A. Wiese, J. Davis, D. Bentz, J. Weiss, The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials, Cem. Concr. Compos. 64 (2015) 1–15. https://doi.org/10.1016/j.cemconcomp.2015.09.006.
DOI: 10.1016/j.cemconcomp.2015.09.006
Google Scholar
[33]
P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on compressive strength and pore size of blended cement paste, Cem. Concr. Compos. 27 (2005) 425–428. https://doi.org/10.1016/j.cemconcomp.2004.07.003.
DOI: 10.1016/j.cemconcomp.2004.07.003
Google Scholar
[34]
P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on microstructure of blended cement paste, Constr. Build. Mater. 21 (2007) 1534–1541. https://doi.org/10.1016/j.conbuildmat.2005.12.024.
DOI: 10.1016/j.conbuildmat.2005.12.024
Google Scholar
[35]
R.J. Myers, S.A. Bernal, J.L. Provis, Phase diagrams for alkali-activated slag binders, Cem. Concr. Res. 95 (2017) 30–38. https://doi.org/10.1016/j.cemconres.2017.02.006.
DOI: 10.1016/j.cemconres.2017.02.006
Google Scholar