[1]
The Global Cement Report™ – 13th Edition, (2019).
Google Scholar
[2]
Du, H., & Dai Pang, S. (2020). High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 264, 120152.
DOI: 10.1016/j.conbuildmat.2020.120152
Google Scholar
[3]
Yurtdas, I., Burlion, N., Shao, J. F., & Li, A. (2011). Evolution of the mechanical behaviour of a high performance self-compacting concrete under drying. Cement and Concrete Composites, 33(3), 380-388.
DOI: 10.1016/j.cemconcomp.2010.12.002
Google Scholar
[4]
Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete research, 78, 126-142.
DOI: 10.1016/j.cemconres.2015.04.012
Google Scholar
[5]
Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green chemistry, 8(9), 763-780.
DOI: 10.1039/b603997a
Google Scholar
[6]
Popescu, C. D., Muntean, M., & Sharp, J. H. (2003). Industrial trial production of low energy belite cement. Cement and Concrete Composites, 25(7), 689-693.
DOI: 10.1016/s0958-9465(02)00097-5
Google Scholar
[7]
Tambara Jr, L. U. D., Cheriaf, M., Rocha, J. C., Palomo, A., & Fernández-Jiménez, A. (2020). Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration. Cement and Concrete Research, 128, 105953.
DOI: 10.1016/j.cemconres.2019.105953
Google Scholar
[8]
Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and concrete research, 38(2), 115-127.
DOI: 10.1016/j.cemconres.2007.09.008
Google Scholar
[9]
Julphunthong, P., & Joyklad, P. (2019). Utilization of several industrial wastes as raw material for calcium sulfoaluminate cement. Materials, 12(20), 3319.
DOI: 10.3390/ma12203319
Google Scholar
[10]
Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106-114.
DOI: 10.1016/j.cemconcomp.2014.11.005
Google Scholar
[11]
Glasser, F. P., & Zhang, L. (2001). High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cement and Concrete Research, 31(12), 1881-1886.
DOI: 10.1016/s0008-8846(01)00649-4
Google Scholar
[12]
Paglia, C. S., Wombacher, F. J., & Bohni, H. K. (2001). Hydration, Strength, and Microstructural Development of High Early-Strength C4A3S Activated Burnt Oil Shale-Based Cement System. Materials Journal, 98(5), 379-385.
DOI: 10.14359/10727
Google Scholar
[13]
Pace, M. L., Telesca, A., Marroccoli, M., & Valenti, G. L. (2011). Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements. Environmental science & technology, 45(14), 6124-6128.
DOI: 10.1021/es2005144
Google Scholar
[14]
Hu, C., Hou, D., & Li, Z. (2017). Micro-mechanical properties of calcium sulfoaluminate cement and the correlation with microstructures. Cement and Concrete Composites, 80, 10-16.
DOI: 10.1016/j.cemconcomp.2017.02.005
Google Scholar
[15]
Telesca, A., Marroccoli, M., Pace, M. L., Tomasulo, M., Valenti, G. L., & Monteiro, P. J. M. (2014). A hydration study of various calcium sulfoaluminate cements. Cement and Concrete Composites, 53, 224-232.
DOI: 10.1016/j.cemconcomp.2014.07.002
Google Scholar
[16]
Afroughsabet, V., Biolzi, L., Monteiro, P. J., & Gastaldi, M. M. (2021). Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement. Journal of Building Engineering, 43, 102656.
DOI: 10.1016/j.jobe.2021.102656
Google Scholar
[17]
Martin, L. H., Winnefeld, F., Müller, C. J., & Lothenbach, B. (2015). Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cement and Concrete Composites, 62, 204-211.
DOI: 10.1016/j.cemconcomp.2015.07.005
Google Scholar
[18]
Carsana, M., Canonico, F., & Bertolini, L. (2018). Corrosion resistance of steel embedded in sulfoaluminate-based binders. Cement and Concrete Composites, 88, 211-219.
DOI: 10.1016/j.cemconcomp.2018.01.014
Google Scholar
[19]
Chidiac, S. E., & Panesar, D. K. (2008). Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement and Concrete Composites, 30(2), 63-71.
DOI: 10.1016/j.cemconcomp.2007.09.003
Google Scholar
[20]
Banthia, N., Majdzadeh, F., Wu, J., & Bindiganavile, V. (2014). Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 48, 91-97.
DOI: 10.1016/j.cemconcomp.2013.10.018
Google Scholar
[21]
Afroughsabet, V., Biolzi, L., & Cattaneo, S. (2019). Evaluation of engineering properties of calcium sulfoaluminate cement-based concretes reinforced with different types of fibers. Materials, 12(13), 2151.
DOI: 10.3390/ma12132151
Google Scholar
[22]
Iqbal, S., Ali, A., Holschemacher, K., & Bier, T. A. (2015). Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Construction and Building Materials, 98, 325-333.
DOI: 10.1016/j.conbuildmat.2015.08.112
Google Scholar
[23]
ASTM C143/C 143M-15a. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete.
Google Scholar
[24]
ASTM C39/C 39M-03. (2003). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
Google Scholar
[25]
ASTM C876-15. (2015). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.
Google Scholar
[26]
Hargis, C. W., Kirchheim, A. P., Monteiro, P. J., & Gartner, E. M. (2013). Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C4A3S) in the presence of gypsum and varying amounts of calcium hydroxide. Cement and Concrete Research, 48, 105-115.
DOI: 10.1016/j.cemconres.2013.03.001
Google Scholar
[27]
Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8(2), 157-164.
DOI: 10.1007/s40069-013-0063-y
Google Scholar
[28]
Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013). Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons.
DOI: 10.1002/9783527651696
Google Scholar
[29]
Bernardo, G., Telesca, A., & Valenti, G. L. (2006). A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cement and concrete research, 36(6), 1042-1047.
DOI: 10.1016/j.cemconres.2006.02.014
Google Scholar