Preliminary Assessment on Durability of High Performance Fiber Reinforced Concrete with CSA Cement

Article Preview

Abstract:

Concrete industry produces a great environmental impact. The total, or partial, substitution of ordinary Portland cement (OPC) with Calcium sulfoaluminate (CSA) cement could be a possible solution, due to its lower production temperature and thus lower CO2 emission. Therefore, there is an essential need to assess the durability properties of concrete produced with CSA cement. In this work a preliminary study on durability of high performance fiber reinforced concretes produced with CSA cement in total or partial substitution of OPC, also with ground granulated blast-furnace slag (GGBS), was performed. Compressive strength and electrical resistivity of the different concrete mixes and electrochemical tests to evaluate corrosion condition of the embedded steel fibers, were assessed. The results show that substitution of OPC with CSA cement improves the mechanical properties of concrete but promotes corrosion of the steel fibers, affecting the durability of this material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-170

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The Global Cement Report™ – 13th Edition, (2019).

Google Scholar

[2] Du, H., & Dai Pang, S. (2020). High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 264, 120152.

DOI: 10.1016/j.conbuildmat.2020.120152

Google Scholar

[3] Yurtdas, I., Burlion, N., Shao, J. F., & Li, A. (2011). Evolution of the mechanical behaviour of a high performance self-compacting concrete under drying. Cement and Concrete Composites, 33(3), 380-388.

DOI: 10.1016/j.cemconcomp.2010.12.002

Google Scholar

[4] Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete research, 78, 126-142.

DOI: 10.1016/j.cemconres.2015.04.012

Google Scholar

[5] Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green chemistry, 8(9), 763-780.

DOI: 10.1039/b603997a

Google Scholar

[6] Popescu, C. D., Muntean, M., & Sharp, J. H. (2003). Industrial trial production of low energy belite cement. Cement and Concrete Composites, 25(7), 689-693.

DOI: 10.1016/s0958-9465(02)00097-5

Google Scholar

[7] Tambara Jr, L. U. D., Cheriaf, M., Rocha, J. C., Palomo, A., & Fernández-Jiménez, A. (2020). Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration. Cement and Concrete Research, 128, 105953.

DOI: 10.1016/j.cemconres.2019.105953

Google Scholar

[8] Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and concrete research, 38(2), 115-127.

DOI: 10.1016/j.cemconres.2007.09.008

Google Scholar

[9] Julphunthong, P., & Joyklad, P. (2019). Utilization of several industrial wastes as raw material for calcium sulfoaluminate cement. Materials, 12(20), 3319.

DOI: 10.3390/ma12203319

Google Scholar

[10] Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106-114.

DOI: 10.1016/j.cemconcomp.2014.11.005

Google Scholar

[11] Glasser, F. P., & Zhang, L. (2001). High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cement and Concrete Research, 31(12), 1881-1886.

DOI: 10.1016/s0008-8846(01)00649-4

Google Scholar

[12] Paglia, C. S., Wombacher, F. J., & Bohni, H. K. (2001). Hydration, Strength, and Microstructural Development of High Early-Strength C4A3S Activated Burnt Oil Shale-Based Cement System. Materials Journal, 98(5), 379-385.

DOI: 10.14359/10727

Google Scholar

[13] Pace, M. L., Telesca, A., Marroccoli, M., & Valenti, G. L. (2011). Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements. Environmental science & technology, 45(14), 6124-6128.

DOI: 10.1021/es2005144

Google Scholar

[14] Hu, C., Hou, D., & Li, Z. (2017). Micro-mechanical properties of calcium sulfoaluminate cement and the correlation with microstructures. Cement and Concrete Composites, 80, 10-16.

DOI: 10.1016/j.cemconcomp.2017.02.005

Google Scholar

[15] Telesca, A., Marroccoli, M., Pace, M. L., Tomasulo, M., Valenti, G. L., & Monteiro, P. J. M. (2014). A hydration study of various calcium sulfoaluminate cements. Cement and Concrete Composites, 53, 224-232.

DOI: 10.1016/j.cemconcomp.2014.07.002

Google Scholar

[16] Afroughsabet, V., Biolzi, L., Monteiro, P. J., & Gastaldi, M. M. (2021). Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement. Journal of Building Engineering, 43, 102656.

DOI: 10.1016/j.jobe.2021.102656

Google Scholar

[17] Martin, L. H., Winnefeld, F., Müller, C. J., & Lothenbach, B. (2015). Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cement and Concrete Composites, 62, 204-211.

DOI: 10.1016/j.cemconcomp.2015.07.005

Google Scholar

[18] Carsana, M., Canonico, F., & Bertolini, L. (2018). Corrosion resistance of steel embedded in sulfoaluminate-based binders. Cement and Concrete Composites, 88, 211-219.

DOI: 10.1016/j.cemconcomp.2018.01.014

Google Scholar

[19] Chidiac, S. E., & Panesar, D. K. (2008). Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement and Concrete Composites, 30(2), 63-71.

DOI: 10.1016/j.cemconcomp.2007.09.003

Google Scholar

[20] Banthia, N., Majdzadeh, F., Wu, J., & Bindiganavile, V. (2014). Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 48, 91-97.

DOI: 10.1016/j.cemconcomp.2013.10.018

Google Scholar

[21] Afroughsabet, V., Biolzi, L., & Cattaneo, S. (2019). Evaluation of engineering properties of calcium sulfoaluminate cement-based concretes reinforced with different types of fibers. Materials, 12(13), 2151.

DOI: 10.3390/ma12132151

Google Scholar

[22] Iqbal, S., Ali, A., Holschemacher, K., & Bier, T. A. (2015). Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Construction and Building Materials, 98, 325-333.

DOI: 10.1016/j.conbuildmat.2015.08.112

Google Scholar

[23] ASTM C143/C 143M-15a. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete.

Google Scholar

[24] ASTM C39/C 39M-03. (2003). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

Google Scholar

[25] ASTM C876-15. (2015). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.

Google Scholar

[26] Hargis, C. W., Kirchheim, A. P., Monteiro, P. J., & Gartner, E. M. (2013). Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C4A3S) in the presence of gypsum and varying amounts of calcium hydroxide. Cement and Concrete Research, 48, 105-115.

DOI: 10.1016/j.cemconres.2013.03.001

Google Scholar

[27] Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8(2), 157-164.

DOI: 10.1007/s40069-013-0063-y

Google Scholar

[28] Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013). Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons.

DOI: 10.1002/9783527651696

Google Scholar

[29] Bernardo, G., Telesca, A., & Valenti, G. L. (2006). A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cement and concrete research, 36(6), 1042-1047.

DOI: 10.1016/j.cemconres.2006.02.014

Google Scholar