[1]
L Bertolini, Steel Corrosion and service life of reinforced concrete structures, Structure and Infrastructure Management, Vol. 4 (2008) pp.123-137.
DOI: 10.1080/15732470601155490
Google Scholar
[2]
L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R. Polder, Corrosion of Steel in Concrete – Prevention, Diagnosis, Repair, Wiley VCH 2nd edition, (2013).
DOI: 10.1002/9783527651696
Google Scholar
[3]
Guidance on the use of stainless steel reinforcement, The Concrete Society, Technical Report No. 51, (1998).
Google Scholar
[4]
C.M. Hansson, Corrosion of stainless steel in concrete, in Corrosion of Steel in Concrete Structures, ed. A. Poursaee. Woodhedad Publishing, Elsevier, (2016).
DOI: 10.1016/b978-1-78242-381-2.00004-3
Google Scholar
[5]
P. Castro-Borges, O.T. de Rincón, E.I. Moreno, A.A. Torres-Acosta, M. Martínez-Madrid, A. Knudsen, Performance of a 60-year-old concrete pier with stainless steel reinforcement, Mater. Performance 41 (2002) 50-55.
Google Scholar
[6]
Markeset, G, Rostam, S. and Klinghoffer, O., Guide for the use of stainless steel reinforcement in concrete structure, Nordic Innovation Centre project-04118, Byggforsk report 405, ISBN 82-536-0926-4, (2006).
Google Scholar
[7]
F. Hunkeler, Use of stainless steel reinforcement in concrete structures, research report 543 (2000) Swiss Federal Department of the Environment, Transport, Energy and Communication (in German) download from mobilityplatform.ch.
Google Scholar
[8]
B. Elsener and A. Rossi, Passivation of Steel and Stainless Steel in Alkaline Media Simulating Concrete, Encyclopedia of Interfacial Chemistry, Elsevier (2018) pp.365-375.
DOI: 10.1016/b978-0-12-409547-2.13772-2
Google Scholar
[9]
B. Elsener, M. Fantauzzi, A. Rossi, Stainless steels: passive film composition, pitting potentials and critical chloride content, Materials and Corrosion, 71 (2020) 797 – 807.
DOI: 10.1002/maco.202011557
Google Scholar
[10]
B. Elsener, S. Coray, D. Addari, A. Rossi, Nickel-free Manganese bearing stainless steel in alkaline media – electrochemistry and surface chemistry, Electrochimica Acta 56 (2011) 4489 – 4497.
DOI: 10.1016/j.electacta.2011.02.049
Google Scholar
[11]
Ha, H.-Y.; Lee, T.-H.; Bae, J.-H.; Chun, D.W. Molybdenum Effects on Pitting Corrosion Resistance of FeCrMnMoNC Austenitic Stainless Steels. Metals 2018, 8, 653 - 666.
DOI: 10.3390/met8080653
Google Scholar
[12]
U. Nürnberger, W. Beul, Corrosion of stainless steel reinforcement in cracked concrete, Otto Graf Journal 10 (1999) 23, https://www.mpa.uni-stuttgart.de/publikationen/otto_graf_journal/ ogj_1999/beitrag_nuernberger.pdf.
Google Scholar
[13]
L. Bertolini and M. Gastaldi, Corrosion resistance of low-nickel duplex stainless steel rebars, Materials and Corrosion 62 (2011) 120 – 129.
DOI: 10.1002/maco.201005774
Google Scholar
[14]
F. Lollini, M. Carsana, M. Gastaldi, E. Redaelli, Corrosion behaviour of stainless steel reinforcement in concrete - Review, Corros Rev 37 (2019) 3 - 19.
DOI: 10.1515/corrrev-2017-0088
Google Scholar
[15]
A. Pachón-Montaño, J. Sánchez-Montero, C. Andrade, J. Fullea, E. Moreno, V. Matres, Threshold concentration of chlorides in concrete for stainless steel reinforcement: Classic austenitic and new duplex stainless steel, Construction and Building Materials 186 (2018) 495 - 502.
DOI: 10.1016/j.conbuildmat.2018.07.081
Google Scholar