Damage­-Based Hysteresis Bouc-­Wen Model for Reinforced Concrete Elements

Article Preview

Abstract:

Hysteresis is observed in various mechanical systems. For structural elements, cyclic loads cause deterioration of their characteristics due to cracks opening, yielding and buckling of metal­lic elements, etc. This contribution presents a smooth hysteresis model for reinforced concrete (RC) structural elements that accounts for both damage and pinching effects. The model is based on the Bouc­-Wen differential equation. Deterioration of the mechanical properties is introduced through a damage index that includes energy dissipation and ductility. Pinching is simulated by acting directlyon the stiffness of the system. The parameters of the model have clear physical meanings, which helps in the identification and interpretation of the results. Applications to RC elements show that the model is suitable for describing complex cyclic behaviours involving effects of damage. Being defined by a smooth hysteresis law, the model is a computationally-­effective tool useful for dynamic and stochastic simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-187

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. V. Sivaselvan and A. M. Reinhorn. Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics, 126(6):633-640, (2000).

DOI: 10.1061/(asce)0733-9399(2000)126:6(633)

Google Scholar

[2] H. Rodrigues, H. Varum, and A. Costa. Simplified macro-model for infill masonry panels. Journal of Earthquake Engineering, 14(3):390-416, (2010).

DOI: 10.1080/13632460903086044

Google Scholar

[3] S. Sirotti, M. Pelliciari, F. Di Trapani, B. Briseghella, G. Carlo Marano, C. Nuti, and A. M. Tarantino. Development and validation of new bouc-wen data-driven hysteresis model for masonry infilled rc frames. Journal of Engineering Mechanics, 147(11):04021092, (2021).

DOI: 10.1061/(asce)em.1943-7889.0002001

Google Scholar

[4] P. G. Asteris, L. Cavaleri, F. Di Trapani, and V. Sarhosis. A macro-modelling approach for the analysis of infilled frame structures considering the effects of openings and vertical loads. Structure and Infrastructure Engineering, 12(5):551-566, (2016).

DOI: 10.1080/15732479.2015.1030761

Google Scholar

[5] L. Cavaleri and F. Di Trapani. Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling. Soil Dynamics and Earthquake Engineering, 65:224-242, 2014.[6] R. Bouc. A mathematical model for hysteresis. Acta Acustica united with Acustica, 24(1):16-25, (1971).

DOI: 10.1016/j.soildyn.2014.06.016

Google Scholar

[7] Y. K. Wen. Method for random vibration of hysteretic systems. Journal of Engineering Mechanics, 102(2):249-263, (1976).

Google Scholar

[8] S. K. Kunnath, J. B. Mander, and L. Fang. Parameter identification for degrading and pinched hysteretic structural concrete systems. Engineering Structures, 19(3):224-232, (1997).

DOI: 10.1016/s0141-0296(96)00058-2

Google Scholar

[9] X. Wang, X. Lu, and L. Ye. Numerical simulation for the hysteresis behavior of RC columns under cyclic loads. Journal of Engineering Mechanics, 12:017, (2007).

Google Scholar

[10] C. S. Lee and S. W. Han. Computationally effective and accurate simulation of cyclic behaviour of old reinforced concrete columns. Engineering Structures, 173:892-907, (2018).

DOI: 10.1016/j.engstruct.2018.07.020

Google Scholar

[11] M. Ismail, J. Rodellar, and F. Ikhouane. An innovative isolation device for aseismic design. Engineering Structures, 32(4):1168-1183, (2010).

DOI: 10.1016/j.engstruct.2009.12.043

Google Scholar

[12] A. Manzoori and H. Toopchi-Nezhad. Application of an extended Bouc-Wen model in seismic response prediction of unbonded fiber-reinforced isolators. Journal of Earthquake Engineering, 21(1):87-104, (2017).

DOI: 10.1080/13632469.2016.1138166

Google Scholar

[13] A. E. Charalampakis and C. K. Dimou. Identification of Bouc-Wen hysteretic systems using particle swarm optimization. Computers & Structures, 88(21-22):1197-1205, (2010).

DOI: 10.1016/j.compstruc.2010.06.009

Google Scholar

[14] S. Y. Kim and C. H. Lee. Description of asymmetric hysteretic behavior based on the Bouc-Wen model and piecewise linear strength-degradation functions. Engineering Structures, 181:181-191, (2019).

DOI: 10.1016/j.engstruct.2018.12.021

Google Scholar

[15] A. Aloisio, R. Alaggio, J. Köhler, and M. Fragiacomo. Extension of generalized Bouc-Wen hysteresis modeling of wood joints and structural systems. Journal of Engineering Mechanics, 146(3):04020001, (2020).

DOI: 10.1061/(asce)em.1943-7889.0001722

Google Scholar

[16] N. Vaiana, S. Sessa, F. Marmo, and L. Rosati. A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics, 93(3):1647-1669, (2018).

DOI: 10.1007/s11071-018-4282-2

Google Scholar

[17] A. Aloisio, M. De Angelo, R. Alaggio, and G. D'Ovidio. Dynamic identification of HTS maglev module for suspended vehicle by using a single-degree-of-freedom generalized Bouc-Wen hysteresis model. Journal of Superconductivity and Novel Magnetism, 34(2):399-407, (2021).

DOI: 10.1007/s10948-020-05745-2

Google Scholar

[18] M. Pelliciari, B. Briseghella, F. Tondolo, L. Veneziano, C. Nuti, R. Greco, D. Lavorato, and A. M. Tarantino. A degrading Bouc-Wen model for the hysteresis of reinforced concrete structural elements. Structure and Infrastructure Engineering, 16(7):917-930, (2020).

DOI: 10.1080/15732479.2019.1674893

Google Scholar

[19] G. C. Foliente. Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6):1013-1022, (1995).

DOI: 10.1061/(asce)0733-9445(1995)121:6(1013)

Google Scholar

[20] G. A. Ortiz, D. A. Alvarez, and D. Bedoya-Ruíz. Identification of Bouc-Wen type models using multi-objective optimization algorithms. Computers & Structures, 114:121-132, (2013).

DOI: 10.1016/j.compstruc.2012.10.016

Google Scholar

[21] R. H. Sues, S. T. Mau, and Y. K. Wen. Systems identification of degrading hysteretic restoring forces. Journal of Engineering Mechanics, 114(5):833-846, (1988).

DOI: 10.1061/(asce)0733-9399(1988)114:5(833)

Google Scholar

[22] M. Ye and X. Wang. Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization. Smart Materials and Structures, 16(6):2341, 2007.[23] M. Pelliciari, G. C. Marano, T. Cuoghi, B. Briseghella, D. Lavorato, and A. M. Tarantino. Parameter identification of degrading and pinched hysteretic systems using a modified Bouc-Wen model. Structure and Infrastructure Engineering, 14(12):1573-1585, (2018).

DOI: 10.1080/15732479.2018.1469652

Google Scholar

[24] M. Berry, M. Parrish, and M. Eberhard. Peer structural performance database, user's manual (version 1.0). University of California, Berkeley, (2004).

Google Scholar

[25] M. Pelliciari and A. M. Tarantino. Equilibrium and Stability of Anisotropic Hyperelastic Graphene Membranes. Journal of Elasticity, 144:169-195, (2021).

DOI: 10.1007/s10659-021-09837-5

Google Scholar

[26] A. B. Matamoros. Study of drift limits for high-strength concrete columns. University of Illinois at Urbana-Champaign, (1999).

Google Scholar

[27] S. Watson. Design of reinforced concrete frames of limited ductility. (1989).

Google Scholar

[28] R. S. Aboutaha and R. I. Machado. Seismic resistance of steel-tubed high-strength reinforcedconcrete columns. Journal of Structural Engineering, 125(5):485-494, (1999).

DOI: 10.1061/(asce)0733-9445(1999)125:5(485)

Google Scholar

[29] J. H. Thomson and J. W. Wallace. Lateral load behavior of reinforced concrete columns constructed using high-strength materials. Structural Journal, 91(5):605-615, (1994).

DOI: 10.14359/4181

Google Scholar

[30] H. Bechtoula, S. Kono, and F. Watanabe. Experimental and analytical investigations of seismic performance of cantilever reinforced concrete columns under varying transverse and axial loads. Journal of Asian Architecture and Building Engineering, 4(2):467-474, (2005).

DOI: 10.3130/jaabe.4.467

Google Scholar

[31] Y. L. Mo and S. J. Wang. Seismic behavior of rc columns with various tie configurations. Journal of Structural Engineering, 126(10):1122-1130, (2000).

DOI: 10.1061/(asce)0733-9445(2000)126:10(1122)

Google Scholar

[32] M. Saatcioglu and M. Grira. Confinement of reinforced concrete columns with welded reinforced grids. Structural Journal, 96(1):29-39, (1999).

DOI: 10.14359/593

Google Scholar

[33] H. Takemura. Effect of hysteresis on ductility capacity of reinforced concrete bridge piers. Structural Engineering Journal, JSCE, A, 43:849-848, (1997).

Google Scholar

[34] M. Kanda. Analytical study on elasto-plastic hysteretic behavior of reinforced concrete members. Transaction of the Japan Concrete Institute, 10:257-264, (1988).

Google Scholar