Climate Change Impact Assessment of Geopolymer Mortars

Article Preview

Abstract:

The awareness of environmental protection, with the conservation of resources and the efficient use of industrial waste, has attracted the attention in recent decades as both the overexploitation of natural resources and the disposal of industrial waste have a negative impact on the environment and sustainability [1]. Under such circumstances, replacing ordinary Portland cement (OPC) with industrial waste has been shown as a sustainable and practical way to reduce the use of natural resources, as well as landfill waste and pollution [2]. The discussion of this issue is part of a path, which sees as its starting point the design of a hydraulic pipeline prototype (Figure 1) made of geopolymer mortar instead of conventional concrete pipes. The environmental sustainability of geopolymer mortars was demonstrated through the Life Cycle Assessment (LCA) methodology. Analysis results indicate that the use of eco-friendly materials contributes to minimizing the environmental impact of new technologies for engineering sector.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-217

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Apithanyasai, N. Supakata, S. Papong. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production. Heliyon, 6 (2020). https://doi.org/10.1016/j.heliyon.2020.e03697.

DOI: 10.1016/j.heliyon.2020.e03697

Google Scholar

[2] F. Colangelo, A. Petrillo, R. Cioffi, C. Borrelli, A. Forcina. Life cycle assessment of recycled concretes: A case study in southern Italy. Science of The Total Environment 615 (2018) 1506-1517. https://doi.org/10.1016/j.scitotenv.2017.09.107.

DOI: 10.1016/j.scitotenv.2017.09.107

Google Scholar

[3] J. L. Provis, 2018. Alkali-activated materials, Cement and Concrete Research 114 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.

DOI: 10.1016/j.cemconres.2017.02.009

Google Scholar

[4] M. Ohno, V.C. Li, 2018. An integrated design method of Engineered Geopolymer Composite. Cement Concr. Compos. 88, 73e85. https://doi.org/10.1016/j. cemconcomp.2018.02.001.

Google Scholar

[5] M. Lahoti, K.H. Tan, E. Yang, 2019. A critical review of geopolymer properties for structural fire-resistance applications, Construction and Building Materials 221 514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076.

DOI: 10.1016/j.conbuildmat.2019.06.076

Google Scholar

[6] M.Z.N. Khan, F.A. Shaikh, Y. Hao, H. Hao, 2016. Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash, Constr. Build. Mater., 125, 809-820.

DOI: 10.1016/j.conbuildmat.2016.08.097

Google Scholar

[7] R. Abbas, M.A. Khereby, Y. Hanaa, G. Elkhoshkhany, 2020. Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost, Clean Technologies and Environmental Policy, 22, 669–687, https://link.springer.com/article/10.1007/s10098-020-01811-4.

DOI: 10.1007/s10098-020-01811-4

Google Scholar

[8] A. Hajimohammadi, J.S. van Deventer, 2017. Characterisation of one-part geopolymer binders made from fly ash Waste Biomass Valorization, 8 (1), 225-233.

DOI: 10.1007/s12649-016-9582-5

Google Scholar

[9] K. Neupane, D. Chalmers, P. Kidd, 2018. High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials. 7 (2), 2018, 15-25.

DOI: 10.11648/j.am.20180702.11

Google Scholar

[10] M. Abdulkareem, J. Havukainen, M. Horttanainen, 2019. How environmentally sustainable are fibre reinforced alkali-activated concretes? Journal of Cleaner Production 236 (2019) 117601. https://doi.org/10.1016/j.jclepro.2019.07.076.

DOI: 10.1016/j.jclepro.2019.07.076

Google Scholar

[11] M.H. Al-Majidi, A.P. Lampropoulos, A.B. Cundy, O.T. Tsioulou, S. Al-Rekabi, 2018. A novel corrosion resistant repair technique for existing reinforced concrete (RC) elements using polyvinyl alcohol fibre reinforced geopolymer concrete (PVAFRGC), Constr. Build. Mater. 164 603–619. https://doi.org/10.1016/j.conbuildmat.2017.12.213.

DOI: 10.1016/j.conbuildmat.2017.12.213

Google Scholar

[12] M.M. Al-mashhadani, O. Canpolat, Y. Aygörmez, M. Uysal, S. Erdem, 2018. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites, Constr. Build. Mater. 167 505–513. https://doi.org/10.1016/j.conbuildmat.2018.02.061.

DOI: 10.1016/j.conbuildmat.2018.02.061

Google Scholar

[13] A. Çomak, A. Bideci, Ö.S. Bideci, 2018. Effects of hemp fibers on characteristics of cement based mortar, Constr. Build. Mater. 169 794–799. 10.1016/j.conbuildmat.2018.03.029.

DOI: 10.1016/j.conbuildmat.2018.03.029

Google Scholar

[14] X. Guo, X. Pan, 2018. Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar, Constr. Build. Mater. 179 633– 641. https://doi.org/10.1016/j.conbuildmat.2018.05.198.

DOI: 10.1016/j.conbuildmat.2018.05.198

Google Scholar

[15] G. Mucsi, Á. Szenczi, S. Nagy, 2018. Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire, J. Cleaner Prod. 178 429–440. 10.1016/J.JCLEPRO.2018.01.018.

DOI: 10.1016/j.jclepro.2018.01.018

Google Scholar

[16] P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, 2007. The role of inorganic polymer technology in the development of "green concrete, Cement Concr. Res., 37, 1590-1597.

DOI: 10.1016/j.cemconres.2007.08.018

Google Scholar

[17] D.A. Salas, A.D. Ramirez, N. Ulloa, H. Baykara, A.J. Boero, 2018. Life cycle assessment of geopolymer concrete, Construction and Building Materials, 190, 170-177.

DOI: 10.1016/j.conbuildmat.2018.09.123

Google Scholar

[18] T. Stengel, J. Reger, D. Heinz, 2009. Life cycle assessment of geopolymer concrete – what is the environmental benefit? Concrete 09, 24th Biennial Conf Australian Concrete Institute. Concrete Institute of Australia, 54-62 Sydney, Australia.

Google Scholar

[19] ISO, 2006. ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework.

DOI: 10.1065/lca2005.03.001

Google Scholar

[20] ISO, 2006. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and Guidelines.

DOI: 10.3403/30290345

Google Scholar

[21] P. Van den Heede, N. De Belie, 2012. Environmental impact and life cycle assessment (LCA) of traditional and green, concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34 (4), 431–442.

DOI: 10.1016/j.cemconcomp.2012.01.004

Google Scholar

[22] M.A.J. Huijbregts et al., 2016. National Institute for Public Health and the Environment. ReCiPe 2016, A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization RIVM. Report 2016-0104.

Google Scholar

[23] Schneider P., Oswald K.-D., Riedel W., Meyer A., Schiller G., Bimesmeier T., Pham Thi V.A., Nguyen Khac L., 2018. Engineering Perspectives and Environmental Life Cycle Optimization to Enhance Aggregate Mining in Vietnam. Sustainability, 10, 525. https://doi.org/10.3390/su10020525.

DOI: 10.3390/su10020525

Google Scholar

[24] Fawer M., Concannon M., Rieber W., 1999. Life cycle inventories for the production of sodium silicates. The International Journal of Life Cycle Assessment, 4, 207.

DOI: 10.1007/bf02979498

Google Scholar

[25] Dorn C., Behrend R., Giannopoulos D., Napolano L., García Baños B., James V., Uhlig V., Catalá J.M., Founti M., Trimis D., 2015. KPI and LCA Evaluation of Integrated Microwave Technology for High Temperature Processes. Procedia CIRP, 29, 492-497. https://doi.org/10.1016/j.procir.2015.02.033.

DOI: 10.1016/j.procir.2015.02.033

Google Scholar

[26] Spath P. L., Mann M. K., Kerr D. R., 1999. Life Cycle Assessment of Coal-fired Power Production. United States. Web. 10.2172/12100.

DOI: 10.2172/12100

Google Scholar