Energy Improvement in the Building Sector: An Economic Analysis Relating to the most Common Italian Masonry

Article Preview

Abstract:

The construction sector is a major contributor to total energy consumption, therefore, it is crucial to adopt energy efficiency strategies capable of reducing energy impact in buildings. Among these strategies, exterior wall insulation is one of the most cost-effective options to achieve energy savings for both newly constructed and renovated buildings. In this paper, based on an economic analysis, we aim to determine the economically optimal thickness of insulation material to be used for retrofit interventions of masonry structures. The study analyzes 10 different insulating materials and 5 masonry structures widespread in Italy. The results show that each masonry structure requires a careful evaluation of the thickness of the insulating material to be applied in retrofit operations. Moreover, varying the type of insulating material used, even if applied to the same wall structure, there are different levels of thickness to be applied in order to optimize the performance of the structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-247

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sovetova, S.A. Memon, J. Kim, Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region, Sol. Energy. 189 (2019) 357–371.

DOI: 10.1016/j.solener.2019.07.067

Google Scholar

[2] A. Credo, A. Cristofari, S. Lucidi, F. Rinaldi, F. Romito, M. Santececca, M. Villani, Design Optimization of Synchronous Reluctance Motor for Low Torque Ripple BT - A View of Operations Research Applications in Italy, 2018, in: M. Dell'Amico, M. Gaudioso, G. Stecca (Eds.), Springer International Publishing, Cham, 2019: p.53–69.

DOI: 10.1007/978-3-030-25842-9_5

Google Scholar

[3] W. Zhu, Z. Zhang, X. Li, W. Feng, J. Li, Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China, J. Clean. Prod. 238 (2019) 117908.

DOI: 10.1016/j.jclepro.2019.117908

Google Scholar

[4] B.-E. Benzar, M. Park, H.-S. Lee, I. Yoon, J. Cho, Determining retrofit technologies for building energy performance, J. Asian Archit. Build. Eng. 19 (2020) 367–383.

DOI: 10.1080/13467581.2020.1748037

Google Scholar

[5] R.D. Muddu, D.M. Gowda, A.J. Robinson, A. Byrne, Optimisation of retrofit wall insulation: An Irish case study, Energy Build. 235 (2021) 110720.

DOI: 10.1016/j.enbuild.2021.110720

Google Scholar

[6] M. Kameni Nematchoua, P. Ricciardi, S. Reiter, A. Yvon, A comparative study on optimum insulation thickness of walls and energy savings in equatorial and tropical climate, Int. J. Sustain. Built Environ. 6 (2017) 170–182.

DOI: 10.1016/j.ijsbe.2017.02.001

Google Scholar

[7] D. D'Agostino, F. de' Rossi, M. Marigliano, C. Marino, F. Minichiello, Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified cost-optimal, methodology, J. Build. Eng. 24 (2019) 100743.

DOI: 10.1016/j.jobe.2019.100743

Google Scholar

[8] A. Bolattürk, Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey, Appl. Therm. Eng. 26 (2006) 1301–1309.

DOI: 10.1016/j.applthermaleng.2005.10.019

Google Scholar

[9] V. Annibaldi, F. Cucchiella, M. Rotilio, A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts, Energies. 13 (2020) 2817.

DOI: 10.3390/en13112817

Google Scholar

[10] M.F. Alsayed, R.A. Tayeh, Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings, J. Build. Eng. 22 (2019) 101–112.

DOI: 10.1016/j.jobe.2018.11.018

Google Scholar

[11] V. Annibaldi, F. Cucchiella, P. De Berardinis, M. Rotilio, V. Stornelli, Environmental and economic benefits of optimal insulation thickness: A life-cycle cost analysis, Renew. Sustain. Energy Rev. 116 (2019) 109441.

DOI: 10.1016/j.rser.2019.109441

Google Scholar

[12] N. Sisman, E. Kahya, N. Aras, H. Aras, Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions, Energy Policy. 35 (2007) 5151–5155.

DOI: 10.1016/j.enpol.2007.04.037

Google Scholar

[13] J. Yu, C. Yang, L. Tian, D. Liao, A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China, Appl. Energy. 86 (2009) 2520–2529.

DOI: 10.1016/j.apenergy.2009.03.010

Google Scholar

[14] Ö.A. Dombaycı, The environmental impact of optimum insulation thickness for external walls of buildings, Build. Environ. 42 (2007) 3855–3859.

DOI: 10.1016/j.buildenv.2006.10.054

Google Scholar

[15] K. Çomaklı, B. Yüksel, Environmental impact of thermal insulation thickness in buildings, Appl. Therm. Eng. 24 (2004) 933–940.

DOI: 10.1016/j.applthermaleng.2003.10.020

Google Scholar

[16] T.M.I. Mahlia, A. Iqbal, Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives, Energy. 35 (2010) 2242–2250.

DOI: 10.1016/j.energy.2010.02.011

Google Scholar

[17] ISO 15686-5:2017, Buildings and constructed assets-Service-life planning. 5. Life-cycle costing, (2017).

DOI: 10.3403/30184346

Google Scholar

[18] UNI/TR 11552:2014, Opaque envelope components of buildings, (2014).

Google Scholar

[19] UNI 10351:2015, Materiali e prodotti per edilizia - Proprietà termoigrometriche - Procedura per la scelta dei valori di progetto, (2015).

Google Scholar

[20] ARERA, Prices, (2021). https://www.arera.it/it/index.htm.

Google Scholar

[21] A. Kylili, P.A. Fokaides, Policy trends for the sustainability assessment of construction materials: A review, Sustain. Cities Soc. 35 (2017) 280–288.

DOI: 10.1016/j.scs.2017.08.013

Google Scholar

[22] R. Idchabani, A. Khyad, M. El Ganaoui, Optimizing insulation thickness of external walls in cold region of Morocco based on life cycle cost analysis, Energy Procedia. 139 (2017) 117–121.

DOI: 10.1016/j.egypro.2017.11.183

Google Scholar

[23] J. Yu, L. Tian, C. Yang, X. Xu, J. Wang, Optimum insulation thickness of residential roof with respect to solar-air degree-hours in hot summer and cold winter zone of china, Energy Build. 43 (2011) 2304–2313.

DOI: 10.1016/j.enbuild.2011.05.012

Google Scholar

[24] O. Kaynakli, A review of the economical and optimum thermal insulation thickness for building applications, Renew. Sustain. Energy Rev. 16 (2012) 415–425.

DOI: 10.1016/j.rser.2011.08.006

Google Scholar

[25] A. Appolloni, C.J. Chiappetta Jabbour, I. D'Adamo, M. Gastaldi, D. Settembre-Blundo, Green recovery in the mature manufacturing industry: The role of the green-circular premium and sustainability certification in innovative efforts, Ecol. Econ. 193 (2022) 107311.

DOI: 10.1016/j.ecolecon.2021.107311

Google Scholar

[26] F. Ascione, N. Bianco, G. Maria Mauro, D.F. Napolitano, Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones, Energy. 174 (2019) 359–374.

DOI: 10.1016/j.energy.2019.02.182

Google Scholar

[27] F.F. Cyrille Vincelas, T. Ghislain, The determination of the most economical combination between external wall and the optimum insulation material in Cameroonian's buildings, J. Build. Eng. 9 (2017) 155–163.

DOI: 10.1016/j.jobe.2016.12.008

Google Scholar

[28] A. Appolloni, I. D'Adamo, M. Gastaldi, E.D.R. Santibanez-Gonzalez, D. Settembre-Blundo, Growing e-waste management risk awareness points towards new recycling scenarios: The view of the Big Four's youngest consultants, Environ. Technol. Innov. 23 (2021) 101716.

DOI: 10.1016/j.eti.2021.101716

Google Scholar

[29] M.S. Medina-Salgado, F.E. García-Muiña, M. Cucchi, D. Settembre-Blundo, Adaptive Life Cycle Costing (LCC) Modeling and Applying to Italy Ceramic Tile Manufacturing Sector: Its Implication of Open Innovation, J. Open Innov. Technol. Mark. Complex. 7 (2021) 101.

DOI: 10.3390/joitmc7010101

Google Scholar

[30] A.M. Ferrari, L. Volpi, D. Settembre-Blundo, F.E. García-Muiña, Dynamic life cycle assessment (LCA) integrating life cycle inventory (LCI) and Enterprise resource planning (ERP) in an industry 4.0 environment, J. Clean. Prod. 286 (2021) 125314.

DOI: 10.1016/j.jclepro.2020.125314

Google Scholar

[31] S. Alonso-Muñoz, R. González-Sánchez, C. Siligardi, F.E. García-Muiña, Building Exploitation Routines in the Circular Supply Chain to Obtain Radical Innovations, Resources. 10 (2021) 22.

DOI: 10.3390/resources10030022

Google Scholar