[1]
M.A. Hassan, A. El Nemr, Health and environmental impacts of dyes: Mini review, Am. J. Environ. Sci. Eng. 1 (2017) 64–67.
Google Scholar
[2]
T. Huda, T.K. Yulingtaningtyas, Kajian adsorpsi methylene blue menggunakan selulosa dari alang-alang, IJCA 10 (2018), 9–19.
DOI: 10.20885/ijca.vol1.iss1.art2
Google Scholar
[3]
P.S. Kumar, S. Ramalingam, K. Sathishkumar, Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nutshell as a new low-cost adsorbent, Korean J. Chem. Eng. 28 (2011) 149–155.
DOI: 10.1007/s11814-010-0342-0
Google Scholar
[4]
N.D. Andari, S. Wardani, Fotokatalis TiO2-zeolit untuk degradasi metilen biru, Chem. Prog. 7 (2014) 9–14.
Google Scholar
[5]
U. Sulaeman, I.R. Nisa, A. Riapanitra, P. Iswanto, S. Yin, T. Sato, The highly active photocatalyst of silver orthophosphate under visible light irradiation for phenol oxidation, Adv. Mater. Res. 896 (2014) 141–144.
DOI: 10.4028/www.scientific.net/amr.896.141
Google Scholar
[6]
C. Piccirillo, R.A. Pinto, D.M. Tobaldi, R.C. Pullar, J.A. Labrincha, M.M.E. Pintado, P.M.L. Castro, Light-induced antibacterial activity and photocatalytic properties of Ag/Ag3PO4 - based material of marine origin, J. Photochem. Photobiol., A 296 (2015) 40–47.
DOI: 10.1016/j.jphotochem.2014.09.012
Google Scholar
[7]
Ministry of Maritime Affairs and Fisheries, PERS Conference: Ministry of Maritime Affairs and Fisheries, PERS Conference Number: Sp. 319/Sj.4/Xii/2020, (2020).
Google Scholar
[8]
Directorate General of Aquaculture, Ministry of Marine Affairs and Fisheries, Annual Performance Report, (2019).
Google Scholar
[9]
P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Springer, Berlin, (1996).
Google Scholar
[10]
Y. Gao, Y. Masuda, K. Koumoto, Bandgap energy of SrTiO3 thin film prepared by the liquid-phase deposition method, J. Korean Ceram. Soc. 40 (2003) 213–218.
Google Scholar
[11]
U. Sulaeman, S. Suhendar, H. Diastuti, A. Riapanitra., S. Yin, Design of Ag3PO4 for highly enhanced photocatalyst using hydroxyapatite as a source of phosphate ion, Solid State Sci. 86 (2018) 1–5.
DOI: 10.1016/j.solidstatesciences.2018.09.015
Google Scholar
[12]
S. Valizadeh, M.H. Rasoulifard, M.S.S. Dorraji, Adsorption and photocatalytic degradation of organic dyes onto crystalline and amorphous hydroxyapatite: Optimization, kinetic and isotherm studies, Korean J. Chem. Eng. 33 (2016) 481–489.
DOI: 10.1007/s11814-015-0172-1
Google Scholar
[13]
M. Tsukada, M. Wakamura, N. Yoshida, T. Watanabe, Bandgap and photocatalytic properties of Ti-substituted hydroxyapatite: Comparison with anatase-TiO2, J. Mol. Catal. A: Chem. 338 (2011) 18–23.
DOI: 10.1016/j.molcata.2011.01.017
Google Scholar
[14]
J. Yan, M. Xu, B. Chai, H. Wang, C. Wang, Z. Ren, In situ construction of BiOBr/Ag3PO4 composites with enhanced visible-light photocatalytic performances, J. Mater. Res. 32 (2017) 1603–1610.
DOI: 10.1557/jmr.2017.89
Google Scholar
[15]
F. Febiyanto, A. Soleh, M.S.K. Amal, M. Afif, S. Sewiji, A. Riapanitra, U. Sulaeman, Facile synthesis of Ag3PO4 photocatalyst with varied ammonia concentration and its photocatalytic activities for dye removal, Bull. Chem. React. Eng. Catal. 14 (2019) 42–50.
DOI: 10.9767/bcrec.14.1.2549.42-50
Google Scholar