Hydroxy-Functionalized PAMAM Dendrimer as a CO2-Selective Molecular Gate for CO2 Membrane Separation

Article Preview

Abstract:

Two hydroxy-functionalized PAMAM Dendrimers (3OH-PAMAM and 4OH-PAMAM) were developed as immobilized liquid membranes (ILMs) to separate CO2 from a mixture of CO2 and N2. The hydroxy-functionalized PAMAM demonstrated excellent properties of CO2-selective separative material for CO2 membrane separation. The hydroxy-functionalized PAMAM dendrimers displayed greater water sorption and more CO2 separation properties than that of conventional PAMAM without hydroxy groups. The resulting ILMs of 4OH-PAMAM showed the highest CO2 over N2 selectivity of 7000 and above with CO2 permeance of 1.1×10−11 m3 (STP) m−2 s−1 Pa−1 (1.5 GPU, 1 GPU = 7.5 × 10−12 m3 (STP) m−2 s−1 Pa−1), with a membrane thickness of 100µm (CO2 permeability 147 Barrers), at 9.7 kPa CO2 partial under 130 kPa feed pressure with 80% RH at 40 °C. For the ILMs of dendrimers at over 60%RH, their PCO2 – α plots exceeded the upper bound line by Roberson in 2008 and that is a potential for CO2 separation from the gas mixture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-28

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Metz, O. Davidson, H. Coninck, M. Loos and L. Meyer, IPCC Special Report on Carbon dioxide Capture and Storage. Prepared by Working Group III of the International Panel on Climate Change, Cambridge University Press, Cambridge (2005).

Google Scholar

[2] A. E. Creamer and B. Gao, Carbon Dioxide Capture: An Effective Way to Combat Global Warming Springer Briefs in Green Chemistry for Sustainability DOI 10.1007/978-3-319-17010-7_2 (2015)1-9.

Google Scholar

[3] C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman and H. W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations coal beds and deep saline aquifers, J. Air & Waste Management Association 53 (2003) 645-715.

DOI: 10.1080/10473289.2003.10466206

Google Scholar

[4] D. Bera, P. Bandyopadhyay, S. Ghosh, S. Banerjee and V. Padmanabhan, Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine, J. Memb. Sci. 474 (2015) 20-31.

DOI: 10.1016/j.memsci.2014.09.032

Google Scholar

[5] T. Zhu, X. Yang, Y. Zhang, Y. Zheng, X. He and J. Luo, Random and block copolymer membranes based on flexible etheric-aliphatic soft segments designed for CO2/CH4 separation, J. Natur. Gas Sci. and Eng. 54 (2018) 92-101.

DOI: 10.1016/j.jngse.2018.04.003

Google Scholar

[6] S. Duan, T. Kai and S. Kazama, Development and fabrication of PAMAM-based composite membrane module with a gutter layer of Chitosan/PAA polymer double network for CO2 separation, IOP Conference Series: Materials Science and Engineering, 2019,.

DOI: 10.1088/1757-899x/479/1/012106

Google Scholar

[7] B. Sasikumar, S. Bisht, G. Arthanareeswaran, A. F. Ismail and M. H. D. Othman, Performance of polysulfone hollow fiber membranes encompassing ZIF-8, SiO2/ZIF-8, and amine-modified SiO2/ZIF-8 nanofillers for CO2/CH4 and CO2/N2 gas separation, Sep. Purif. Tech. 264 (2021) 118471.

DOI: 10.1016/j.seppur.2021.118471

Google Scholar

[8] P. Natarajan, B. Sasikumar, S. Elakkiya, G. Arthanareeswaran, A. F. Ismail, W. Youravong, E. Yuliwati, Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation, J. Nat. Gas. Sci. Eng. 86 (2021) 103720.

DOI: 10.1016/j.jngse.2020.103720

Google Scholar

[9] T. Zhu, X. Yang, X. He, Y. Zheng and J. Luo, Aromatic polyamides and copolyamides containing fluorene group: Synthesis, thermal stability, and gas transport properties High Performance, Polymers 30 (2017) 821-832.

DOI: 10.1177/0954008317732121

Google Scholar

[10] A. S. Kovvali, H. Chen and K. K. Sirkar, Dendrimer membranes: A CO2-selective molecular gate, J. Am. Chem. Soc. 122 (2000) 7594–7595.

DOI: 10.1021/ja0013071

Google Scholar

[11] A. S. Kovvali and K. K. Sirkar, Dendrimer Liquid Membranes: CO2 Separation from Gas Mixtures, Ind. & Eng. Chem. Res. 40 (2001) 2502–2511.

DOI: 10.1021/ie0010520

Google Scholar

[12] H. Xie, J. K. Johnson and R. J. Perry, A computational study of the heats of reaction of substituted monoethanolamine with CO2 , J. Phys. Chem. A 115 (2011) 342-350.

Google Scholar

[13] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, Dendritic macromolecules: synthesis of starburst dendrimers, Macromolecules 19 (1986) 2466-2468.

DOI: 10.1021/ma00163a029

Google Scholar

[14] S. Duan, A.Ito and A.Ohkawa, Separation of propylene/propane mixture by a supported liquid membrane containing triethylene glycol and a silver salt, J. Memb. Sci. 251 (2003) 53–60.

DOI: 10.1016/s0376-7388(02)00601-4

Google Scholar

[15] S. Duan, T. Kouketsu, S. Kazama and K. Yamada, Development of PAMAM dendrimer composite membrane for CO2 separation, J. Memb. Sci. 283 (2006) 2–6.

DOI: 10.1016/j.memsci.2006.06.026

Google Scholar

[16] F. Moghadam, E. Kamio, T. Yoshioka and H. Matsuyama, New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport, J. Memb. Sci. 530 (2017) 166-175.

DOI: 10.1016/j.memsci.2017.02.032

Google Scholar

[17] L. M. Robeson, The upper bound revisited, J. Memb. Sci. 320 (2008) 390–400.

Google Scholar

[18] J. Wang, Y. Zang, G. Yin, T. Aoki, H. Urita, K. Taguwa, L. Liu, T. Namikoshi, M. Teraguchi, T. Kaneko, L. Ma and H. Jia, Facile synthesis of five 2D surface modifiers by highly selective photocyclic aromatization and efficient enhancement of oxygen permselectivities of three polymer membranes by surface modification using a small amount of the 2D surface modifiers, Polymer 55 (2014) 1384-1396.

DOI: 10.1016/j.polymer.2013.11.046

Google Scholar

[19] M. X. Tang, C. T. Redemann and F. C. Szoka, In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconj. Chem. 7(6) (1996) 703-714.

DOI: 10.1021/bc9600630

Google Scholar