Oxygen Electrochemical Production from Air by High Performance Anion Exchange Membrane Electrode Assemble Devices

Article Preview

Abstract:

CoNi and FeCoNi hydroxide with narrow voltage distance between oxygen reduction reaction and oxygen evolution reaction was synthetized by electro-deposition in low solvent concentration. 5cm2 Membrane electrode assemble (MEA) electrolyzers composed with anion exchange membrane, homogenerated catalyst on both cathode and anode gas diffusion layer (GDL) was fabricated for oxygen electrochemical production from air. The current and yield of binary CoNi device reached up to 466.7mA and 4.4mmol/h (94.7% conversion rate) at 1.2V. The ternary FeCoNi device showed only 0.5% degradation from 394.0mA during 12h. The applicability of oxygen production from air by high performance electrochemical devices was demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-171

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Tseung, and S. M. Jasem, An integrated electrochemical-chemical method for the extraction of O 2 from air,, Journal of Applied Electrochemistry, vol. 11, no. 2, pp.209-215, (1981).

DOI: 10.1007/bf00610983

Google Scholar

[2] B. L. Kuzin, A. K. Demin, A. S. Lipilin, and M. V. Perfilev, Electrochemical Method of Producing Oxygen from Air - the Energy Aspect of the Problem,, Soviet Electrochemistry, vol. 22, no. 9, pp.1193-1195, Sep, (1986).

Google Scholar

[3] W. Feduska, A. O. Isenberg, and J. T. Brown, Solid oxide electrolyte electrochemical oxygen generator,, CA, (1991).

Google Scholar

[4] M. Gilberg, and D. W. Grattan, Dynamic system for removing oxygen from air using an electrochemical cell,, Studies in Conservation, vol. 41, no. 3, pp.183-186, (1996).

DOI: 10.1179/sic.1996.41.3.183

Google Scholar

[5] P. D. Gallo, and G. Gouriou, Process for the production of oxygen from air, in particular by means of an electrochemical cell with a ceramic membrane and with controlling means allowing a continuous oxygen production,, (2007).

Google Scholar

[6] E. Brillas, A. Maestro, M. Moratalla, and J. Casado, Electrochemical extraction of oxygen from air via hydroperoxide ion,, Journal of Applied Electrochemistry, vol. 27, no. 1, pp.83-92, Jan, (1997).

Google Scholar

[7] H. B. Tao, Y. H. Xu, X. Huang, J. Z. Chen, L. J. Pei, J. M. Zhang, J. G. G. Chen, and B. Liu, A General Method to Probe Oxygen Evolution Intermediates at Operating Conditions,, Joule, vol. 3, no. 6, pp.1498-1509, Jun 19, (2019).

DOI: 10.1016/j.joule.2019.03.012

Google Scholar

[8] L. Fang, Study on the Electrochemical Extraction of Oxygen from Air,, Journal of South China University of Technology, (2003).

Google Scholar

[9] B. Eladeb, C. Bonnet, E. Favre, and F. Lapicque, Electrochemical extraction of oxygen using PEM electrolysis technology,, Journal of Electrochemical Science and Engineering, vol. 2, no. 4, (2012).

DOI: 10.5599/jese.2012.0016

Google Scholar

[10] X. Zhu, J. Zhang, L. I. Xiaosong, J. Liu, J. Liu, and C. Jin, Electrochemical continuous separation of oxygen from air(Ⅰ): Optimum of single cell performances,, CIESC Journal, (2016).

Google Scholar

[11] S. Vengatesan, S. Santhi, S. Jeevanantham, and G. Sozhan, Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers,, Journal of Power Sources, vol. 284, pp.361-368, Jun 15, (2015).

DOI: 10.1016/j.jpowsour.2015.02.118

Google Scholar

[12] Z. C. Liu, S. D. Sajjad, Y. Gao, H. Z. Yang, J. J. Kaczur, and R. I. Masel, The effect of membrane on an alkaline water electrolyzer,, International Journal of Hydrogen Energy, vol. 42, no. 50, pp.29661-29665, Dec 14, (2017).

DOI: 10.1016/j.ijhydene.2017.10.050

Google Scholar

[13] I. Vincent, A. Kruger, and D. Bessarabov, Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis,, International Journal of Hydrogen Energy, vol. 42, no. 16, pp.10752-10761, Apr 20, (2017).

DOI: 10.1016/j.ijhydene.2017.03.069

Google Scholar

[14] J. J. Kaczur, H. Z. Yang, Z. C. Liu, S. A. Sajjad, and R. I. Masel, Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes,, Frontiers in Chemistry, vol. 6, Jul 3, (2018).

DOI: 10.3389/fchem.2018.00263

Google Scholar

[15] D. Chanda, J. Hnat, T. Bystron, M. Paidar, and K. Bouzek, Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis,, Journal of Power Sources, vol. 347, pp.247-258, Apr 15, (2017).

DOI: 10.1016/j.jpowsour.2017.02.057

Google Scholar

[16] C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, and M. Comotti, Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis,, Angewandte Chemie-International Edition, vol. 53, no. 5, pp.1378-1381, Jan 27, (2014).

DOI: 10.1002/anie.201308099

Google Scholar

[17] S. C. Zignani, M. Lo Faro, S. Trocino, and A. S. Arico, Investigation of NiFe-Based Catalysts for Oxygen Evolution in Anion-Exchange Membrane Electrolysis,, Energies, vol. 13, no. 7, Apr, (2020).

DOI: 10.3390/en13071720

Google Scholar

[18] M. Zhang, Y. Q. Liu, B. Y. Liu, Z. Chen, H. Xu, and K. Yan, Trimetallic NiCoFe-Layered Double Hydroxides Nanosheets Efficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural,, Acs Catalysis, vol. 10, no. 9, pp.5179-5189, May 1, (2020).

DOI: 10.1021/acscatal.0c00007

Google Scholar