[1]
MARS W V, FATEMI A. A literature survey on fatigue analysis approaches for rubber [J]. International Journal of Fatigue, 2002, (24): 949–961.
DOI: 10.1016/s0142-1123(02)00008-7
Google Scholar
[2]
ZINE A, BENSEDDIQ N, NAïT ABDELAZIZ M. Rubber fatigue life under multiaxial loading: Numerical and experimental investigations [J]. International Journal of Fatigue, 2011, 33(10): 1360-1368.
DOI: 10.1016/j.ijfatigue.2011.05.005
Google Scholar
[3]
LOEW P J, POH L H, PETERS B, et al. Accelerating fatigue simulations of a phase-field damage model for rubber [J]. Computer Methods in Applied Mechanics and Engineering, 2020, (370): 113247.
DOI: 10.1016/j.cma.2020.113247
Google Scholar
[4]
KIM W D, A H J L, A J Y K, et al. Fatigue life estimation of an engine rubber mount [J]. International Journal of Fatigue, 2004, (26 ): 553-60.
DOI: 10.1016/j.ijfatigue.2003.08.025
Google Scholar
[5]
MOON S-I, CHO I-J, WOO C-S, et al. Study on determination of durability analysis process and fatigue damage parameter for rubber component [J]. Journal of Mechanical Science and Technology, 2011, 25(5): 1159-65.
DOI: 10.1007/s12206-011-0221-6
Google Scholar
[6]
WOO C-S, KIM W-D, KWON J-D. A study on the material properties and fatigue life prediction of natural rubber component [J]. Materials Science and Engineering: A, 2008, (483-484): 376-81.
DOI: 10.1016/j.msea.2006.09.189
Google Scholar
[7]
SHANGGUAN Wenbin, DUAN Xiaocheng, LIU Taikai et al. Study on the Effect of Different Damage Parameters on the PredictingFatigue Life of Rubber Isolators [J]. Journal of Mechanical Engineering, 2016, 52(02): 116-26.
DOI: 10.3901/jme.2016.02.116
Google Scholar
[8]
WANG Wentao, SHANGGUAN Wenbin, DUAN Xiaocheng. Study on Prediction of Fatigue Life of Rubber Mount Based on Linear Cumulative Fatigue Damage Theory [J]. Journal of Mechanical Engineering, 2012, (10): 56-65.
DOI: 10.3901/jme.2012.10.056
Google Scholar
[9]
HARBOUR R J O. Multiaxial Deformation and Fatigue ofRubber under Variable Amplitude Loading [D]; The University of Toledo, (2006).
Google Scholar
[10]
GEHRMANN O, KRöGER N H, MUHR A. Displacement-controlled fatigue testing of rubber is not strain-controlled [J]. International Journal of Fatigue, 2021, 145: 106083.
DOI: 10.1016/j.ijfatigue.2020.106083
Google Scholar
[11]
ZARRIN-GHALAMI T, FATEMI A. Multiaxial fatigue and life prediction of elastomeric components [J]. International Journal of Fatigue, 2013, (55): 92-101.
DOI: 10.1016/j.ijfatigue.2013.05.009
Google Scholar
[12]
MARS W, FATEMI A. Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading [J]. Journal of Materials Science, 2006, 41(22): 7324-32.
DOI: 10.1007/s10853-006-0962-2
Google Scholar
[13]
CHOI J, QUAGLIATO L, LEE S, et al. Multiaxial fatigue life prediction of polychloroprene rubber (CR) reinforced with tungsten nano-particles based on semi-empirical and machine learning odels [J]. International Journal of Fatigue, 2021, (145): 106-136.
DOI: 10.1016/j.ijfatigue.2020.106136
Google Scholar
[14]
V.MARS W, A.FATEMI. A phenomenological model for the effect of R ratio on fatigue of strain crystallizing rubbers [M]. Akron, OH, ETATS-UNIS: American Chemical Society, (2003).
DOI: 10.5254/1.3547800
Google Scholar
[15]
J. C D, J. Y. A review of methods to characterize rubber elastic behaviour for use in finite element analysis [J]. Rubber Chemistry and technology, 1994, (67): 481-503.
DOI: 10.5254/1.3538686
Google Scholar
[16]
LI Q, ZHAO J-C, ZHAO B. Fatigue life prediction of a rubber mount based on test of material properties and finite element analysis [J]. Engineering Failure Analysis, 2009, 16(7): 2304-10.
DOI: 10.1016/j.engfailanal.2009.03.008
Google Scholar
[17]
CHO J R, JEE Y B, KIM W J, et al. Homogenization of braided fabric composite for reliable large deformation analysis of reinforced rubber hose [J]. Composites Part B: Engineering, 2013, (53): 112-20.
DOI: 10.1016/j.compositesb.2013.04.045
Google Scholar
[18]
CRUANES C, LACROIX F, BERTON G, et al. Study of the fatigue behavior of a synthetic rubber undergoing cumulative damage tests [J]. International Journal of Fatigue, 2016, (91): 32-27.
DOI: 10.1016/j.ijfatigue.2015.11.026
Google Scholar
[19]
BEHROOZIKHAH A, MORAFA S H, AFLAKI S. Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy [J]. Construction and Building Materials, 2017, (141): 52-32.
DOI: 10.1016/j.conbuildmat.2017.03.011
Google Scholar
[20]
CHO J R, YOON Y H, SEO C W, et al. Fatigue life assessment of fabric braided composite rubber hose in complicated large deformation cyclic motion [J]. Finite Elements in Analysis and Design, 2015, (100): 65-76.
DOI: 10.1016/j.finel.2015.03.002
Google Scholar
[21]
LUO R K, MORTE W J, WU X P. Fatigue failure investigation on anti-vibration springs [J]. Engineering Failure Analysis, 2009, 16(5): 1366-78.
DOI: 10.1016/j.engfailanal.2008.09.005
Google Scholar
[22]
CHAMPY C, LE SAUX V, MARCO Y, et al. Fatigue of crystallizable rubber: Generation of a Haigh diagram over a wide range of positive load ratios [J]. International Journal of Fatigue, 2021, (150): 106313.
DOI: 10.1016/j.ijfatigue.2021.106313
Google Scholar
[23]
TEE Y L, LOO M S, ANDRIYANA A. Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004 [J]. International Journal of Fatigue, 2018, (110): 115-29.
DOI: 10.1016/j.ijfatigue.2018.01.007
Google Scholar
[24]
TOBAJAS R, ELDUQUE D, IBARZ E, et al. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials. J Polymers [J]. 2020, 12(5).
DOI: 10.3390/polym12051194
Google Scholar