A Refined Cumulative Fatigue Damage Model for Rubber Components

Article Preview

Abstract:

Prediction of the fatigue of rubber component can be difficult owing to rubber material being mechanically nonlinear and a large variety of randomness being invloved in production. Based on the classic metal fatigue prediction theory, this work proposes a refined cumulative fatigue predictor in a tensor form for the rubber components fagtigue life prediction using a hyperelastic FE analysis. The predictor is applied to estimate the fatigue behavior of engine rubber mounts under two working conditions while the fatigue life is measured using hydraulic testing machine. The predicted fatigue life is shown to be within ±2 times of the measurement results suggesting the effectiveness of the proposed method.The applicability of the proposed approach in rubber-related industrial products evaluation is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-196

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] MARS W V, FATEMI A. A literature survey on fatigue analysis approaches for rubber [J]. International Journal of Fatigue, 2002, (24): 949–961.

DOI: 10.1016/s0142-1123(02)00008-7

Google Scholar

[2] ZINE A, BENSEDDIQ N, NAïT ABDELAZIZ M. Rubber fatigue life under multiaxial loading: Numerical and experimental investigations [J]. International Journal of Fatigue, 2011, 33(10): 1360-1368.

DOI: 10.1016/j.ijfatigue.2011.05.005

Google Scholar

[3] LOEW P J, POH L H, PETERS B, et al. Accelerating fatigue simulations of a phase-field damage model for rubber [J]. Computer Methods in Applied Mechanics and Engineering, 2020, (370): 113247.

DOI: 10.1016/j.cma.2020.113247

Google Scholar

[4] KIM W D, A H J L, A J Y K, et al. Fatigue life estimation of an engine rubber mount [J]. International Journal of Fatigue, 2004, (26 ): 553-60.

DOI: 10.1016/j.ijfatigue.2003.08.025

Google Scholar

[5] MOON S-I, CHO I-J, WOO C-S, et al. Study on determination of durability analysis process and fatigue damage parameter for rubber component [J]. Journal of Mechanical Science and Technology, 2011, 25(5): 1159-65.

DOI: 10.1007/s12206-011-0221-6

Google Scholar

[6] WOO C-S, KIM W-D, KWON J-D. A study on the material properties and fatigue life prediction of natural rubber component [J]. Materials Science and Engineering: A, 2008, (483-484): 376-81.

DOI: 10.1016/j.msea.2006.09.189

Google Scholar

[7] SHANGGUAN Wenbin, DUAN Xiaocheng, LIU Taikai et al. Study on the Effect of Different Damage Parameters on the PredictingFatigue Life of Rubber Isolators [J]. Journal of Mechanical Engineering, 2016, 52(02): 116-26.

DOI: 10.3901/jme.2016.02.116

Google Scholar

[8] WANG Wentao, SHANGGUAN Wenbin, DUAN Xiaocheng. Study on Prediction of Fatigue Life of Rubber Mount Based on Linear Cumulative Fatigue Damage Theory [J]. Journal of Mechanical Engineering, 2012, (10): 56-65.

DOI: 10.3901/jme.2012.10.056

Google Scholar

[9] HARBOUR R J O. Multiaxial Deformation and Fatigue ofRubber under Variable Amplitude Loading [D]; The University of Toledo, (2006).

Google Scholar

[10] GEHRMANN O, KRöGER N H, MUHR A. Displacement-controlled fatigue testing of rubber is not strain-controlled [J]. International Journal of Fatigue, 2021, 145: 106083.

DOI: 10.1016/j.ijfatigue.2020.106083

Google Scholar

[11] ZARRIN-GHALAMI T, FATEMI A. Multiaxial fatigue and life prediction of elastomeric components [J]. International Journal of Fatigue, 2013, (55): 92-101.

DOI: 10.1016/j.ijfatigue.2013.05.009

Google Scholar

[12] MARS W, FATEMI A. Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading [J]. Journal of Materials Science, 2006, 41(22): 7324-32.

DOI: 10.1007/s10853-006-0962-2

Google Scholar

[13] CHOI J, QUAGLIATO L, LEE S, et al. Multiaxial fatigue life prediction of polychloroprene rubber (CR) reinforced with tungsten nano-particles based on semi-empirical and machine learning odels [J]. International Journal of Fatigue, 2021, (145): 106-136.

DOI: 10.1016/j.ijfatigue.2020.106136

Google Scholar

[14] V.MARS W, A.FATEMI. A phenomenological model for the effect of R ratio on fatigue of strain crystallizing rubbers [M]. Akron, OH, ETATS-UNIS: American Chemical Society, (2003).

DOI: 10.5254/1.3547800

Google Scholar

[15] J. C D, J. Y. A review of methods to characterize rubber elastic behaviour for use in finite element analysis [J]. Rubber Chemistry and technology, 1994, (67): 481-503.

DOI: 10.5254/1.3538686

Google Scholar

[16] LI Q, ZHAO J-C, ZHAO B. Fatigue life prediction of a rubber mount based on test of material properties and finite element analysis [J]. Engineering Failure Analysis, 2009, 16(7): 2304-10.

DOI: 10.1016/j.engfailanal.2009.03.008

Google Scholar

[17] CHO J R, JEE Y B, KIM W J, et al. Homogenization of braided fabric composite for reliable large deformation analysis of reinforced rubber hose [J]. Composites Part B: Engineering, 2013, (53): 112-20.

DOI: 10.1016/j.compositesb.2013.04.045

Google Scholar

[18] CRUANES C, LACROIX F, BERTON G, et al. Study of the fatigue behavior of a synthetic rubber undergoing cumulative damage tests [J]. International Journal of Fatigue, 2016, (91): 32-27.

DOI: 10.1016/j.ijfatigue.2015.11.026

Google Scholar

[19] BEHROOZIKHAH A, MORAFA S H, AFLAKI S. Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy [J]. Construction and Building Materials, 2017, (141): 52-32.

DOI: 10.1016/j.conbuildmat.2017.03.011

Google Scholar

[20] CHO J R, YOON Y H, SEO C W, et al. Fatigue life assessment of fabric braided composite rubber hose in complicated large deformation cyclic motion [J]. Finite Elements in Analysis and Design, 2015, (100): 65-76.

DOI: 10.1016/j.finel.2015.03.002

Google Scholar

[21] LUO R K, MORTE W J, WU X P. Fatigue failure investigation on anti-vibration springs [J]. Engineering Failure Analysis, 2009, 16(5): 1366-78.

DOI: 10.1016/j.engfailanal.2008.09.005

Google Scholar

[22] CHAMPY C, LE SAUX V, MARCO Y, et al. Fatigue of crystallizable rubber: Generation of a Haigh diagram over a wide range of positive load ratios [J]. International Journal of Fatigue, 2021, (150): 106313.

DOI: 10.1016/j.ijfatigue.2021.106313

Google Scholar

[23] TEE Y L, LOO M S, ANDRIYANA A. Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004 [J]. International Journal of Fatigue, 2018, (110): 115-29.

DOI: 10.1016/j.ijfatigue.2018.01.007

Google Scholar

[24] TOBAJAS R, ELDUQUE D, IBARZ E, et al. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials. J Polymers [J]. 2020, 12(5).

DOI: 10.3390/polym12051194

Google Scholar