Characterization and Rheological Improvement of Boyolali White Bentonite with Soda Ash and Carboxy Methyl Cellulose

Article Preview

Abstract:

The main objective of this study was to evaluate the effect of soda ash (SA) and carboxy methyl cellulose (CMC) on the rheological of white bentonite collected from Boyolali, Indonesia (BWB). The first work was the determination of BWB composition with XRF and the study on the effect of SA on the swelling index. The second step was to study adding SA and CMC on viscosity at 600 and 300 rpm. Another rheological parameter (yield point to plastic viscosity ratio, μPV) was determined based on the viscosity data. The results showed that the BWB sample tended to be categorized as Ca-bentonite with a calcium oxide content of 0.70 wt.% and contained montmorillonite, quartz, and pyrophyllite. SA and CMC in BWB increased the interlayer space of the montmorillonite. The addition of 14 wt.% SA to the BWB sample showed the maximum swelling index of 10 mL/2 g. The optimal formula meeting API 13A specifications is BWB sample of 81.23 wt.%, soda ash 14 % (w/w), and CMC 4.77 wt.%. This product results in the viscosity at a reading of 600 rpm of 30 cP and the μPV ratio of 1.0. Therefore, the product is potential as a candidate material for drilling mud.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-145

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] MC Li, Q. Wu, K. Song, CF De Hoop, S. Lee, Y. Qing, Y. Wu, Cellulose Nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modelling and filtration mechanisms, Ind. Eng. Chem. Res. 55 (2015) 133–143.

DOI: 10.1021/acs.iecr.5b03510

Google Scholar

[2] M. Magzoub. M. Mahmoud, M. Nasser, I. Hussein, S. Elkatatny, A. Sultan, Thermochemical upgrading of calcium bentonite for drilling fluid applications, J. Energy Resour. Technol. 141 (2019) 042902.

DOI: 10.1115/1.4041843

Google Scholar

[3] B. Satiyawira, Pengaruh temperatur terhadap sifat fisik sistem low solid mud dengan penambahan aditif biopolimer dan bentonite extender, Jurnal Petro 7 (2018) 144–151.

DOI: 10.25105/petro.v7i4.4282

Google Scholar

[4] M.I. Magzoub, I.A. Hussein, M.S. Nasser, M. Mahmoud, AS Sultan, A. Benamor, An investigation of the swelling kinetics of bentonite systems using particle size analysis, J. Dispersion Sci. Technol. 41 (2020) 817–827.

DOI: 10.1080/01932691.2019.1612758

Google Scholar

[5] B.M.A. Brito, P.M. Bastos, A.J.A. Gama, J.M. Cartaxo, G.A. Neves, H.C. Ferreira, Effect of carboxymethylcellulose on the rheological and filtration properties of bentonite clay samples determined by experimental planning and statistical analysis, Cerâmica 64 (2018) 254–265.

DOI: 10.1590/0366-69132018643702332

Google Scholar

[6] L. Eoff, B. Waltman, Polymer treatment controls fluid loss while maintaining hydrocarbon flow, J. Pet. Technol. 61 (2009) 28–34.

DOI: 10.2118/0709-0028-jpt

Google Scholar

[7] ASTM D5890, Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners, ASTM International, West Conshohocken, PA, (2011).

DOI: 10.1520/d5890

Google Scholar

[8] A.D. Macheca, B. Uwiragiye, Application of nanotechnology in oil and gas industry: Synthesis and characterization of organo-modified bentonite from Boane deposit and its application in produced water treatment, Chem. Eng. Trans. 81 (2020) 1081–1086.

Google Scholar

[9] F.M.T. Luna, J.A. Cecilia, R.M.A. Saboya, D. Barrera, K. Sapag, E. Rodríguez-Castellón, C.L. Cavalcante Jr., Natural and modified montmorillonite clays as catalysts for synthesis of biolubricants, Materials 11 (2018) 1764.

DOI: 10.3390/ma11091764

Google Scholar

[10] L. Ahonen, P. Korkeakoski, M. Tiljander, H. Kivikoski, R. Laaksonen, Quality Assurance of the Bentonite Material, Working Report 2008-33, Posiva Oy, Eurajoki, Finland, (2008).

Google Scholar

[11] M.D Foster, The relation between composition and swelling in clays, Open-File Report, US Geological Survey, Washington, DC, 1955, 205–220.

DOI: 10.3133/ofr5491

Google Scholar

[12] API 13A, Specification for Drilling Fluids Materials, 18th Ed., American Petroleum Institute, API Publishing Service, Washington, DC, (2010).

Google Scholar

[13] A.S. Ibrahim, M.A. Al-Bidry, Activation Iraqi bentonite for using as drilling mud, IOP Conf. Ser.: Mater. Sci. Eng. 579 (2019) 012006.

DOI: 10.1088/1757-899x/579/1/012006

Google Scholar

[14] J. Ma, Y. Lei, M.A. Khan, F. Wang, Y. Chu, W. Lei, M. Xia, S. Zhu, Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite, Int. J. Biol. Macromol. 124 (2019) 557–567.

DOI: 10.1016/j.ijbiomac.2018.11.235

Google Scholar

[15] M.C. Onojake, T.N. Chikwe, Rheological properties of some oil-based muds used in reservoirs in the Niger Delta, Nigeria, Global J. Pure Appl. Sci. 25 (2019) 39–44.

DOI: 10.4314/gjpas.v25i1.6

Google Scholar

[16] X.H. Yang, W.L. Zhu, Viscosity properties of sodium carboxymethyl cellulose solutions, Cellulose 14 (2007) 409–417.

DOI: 10.1007/s10570-007-9137-9

Google Scholar

[17] E. Purwaningsih, S. Supartono, H. Harjono, Reaksi transesterifikasi minyak kelapa dengan metanol menggunakan katalis bentonit, Indo. J. Chem. Sci. 1 (2012) 133–139.

Google Scholar

[18] V.C. Farmer, J.D. Russel, The infra-red spectra of layer silicates, Spectrochim. Acta 20 (1964) 1149–1173.

DOI: 10.1016/0371-1951(64)80165-x

Google Scholar

[19] Q. Wang, X. Chang, D. Li, Z. Hu, R. Li, Q. He, Adsorption of chromium(III), mercury(II), and lead(II) ions onto 4-aminoantipyrine immobilized bentonite, J. Hazard. Mater. 186 (2011) 1076–1081.

DOI: 10.1016/j.jhazmat.2010.11.107

Google Scholar

[20] P. Komadel, Chemically modified smectites, Clay Miner. 38 (2003) 127–138.

DOI: 10.1180/0009855033810083

Google Scholar