Effect of Hydrogen Peroxide Concentration to Fluorescence Properties of Carbon Dot from HDPE

Article Preview

Abstract:

This research paper describes the effect of hydrogen peroxide concentrations (0; 1; 3; 5 and 7 wt%) on fluorescence properties of carbon dots (CDs) from high-density polyethylene (HDPE) plastic. Synthesis of CDs has been carried out using modified pyrolysis and hydrothermal methods. The CDs obtained were characterized by FTIR, XRD, UV-Visible and fluorescence spectrophotometer. Based on UV-Visible spectra, the maximum wavelength of carbon dot ranges from 287 to 291 nm, indicating there is an π -π* electron transition belonging to the core site (C=C), then the absorption widens to 400 nm which indicated n-π* electron transition relating to the CDs surface functional group (carbonyl, hydroxyl, and carboxyl). The use of hydrogen peroxide (5 wt%) can produce CDs with the best fluorescence properties based on fluorescence spectra. CDs has a structure like graphite which is rich in functional groups on its surface. The photocatalytic activity of carbon dot has been tested and it showed that CDs can degrade methylene blue (MB) dye under visible light (80.3%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-113

Citation:

Online since:

May 2022

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Amobonye, P. Bhagwat, S. Singh, S. Pillai, Plastic biodegradation: Frontline microbes and their enzymes, Sci. Total Environ. 759 (2021) 143536.

DOI: 10.1016/j.scitotenv.2020.143536

Google Scholar

[2] S. Sharma, A. Umar, S. Sood, S.K. Mehta, S.K. Kansal, Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications, J. Alloys Compd. 748 (2018) 818–853.

DOI: 10.1016/j.jallcom.2018.03.001

Google Scholar

[3] M.C. Krueger, H. Harms, D. Schlosser, Prospects for microbiological solutions to environmental pollution with plastics, Appl. Microbiol. Biotechnol. 99 (2015) 8857–8874.

DOI: 10.1007/s00253-015-6879-4

Google Scholar

[4] B. Gewert, M.M. Plassmann, M. Macleod, Pathways for degradation of plastic polymers floating in the marine environment, Environ. Sci.: Processes Impacts 17 (2015) 1513–1521.

DOI: 10.1039/c5em00207a

Google Scholar

[5] D. Danso, J. Chow, W.R. Streit, Plastics: Environmental and biotechnological perspectives on microbial degradation, Appl. Environ. Microbiol. 85 (2019) e01095-19.

DOI: 10.1128/aem.01095-19

Google Scholar

[6] I. Ahmad, M.I. Khan, M. Ishaq, H. Khan, K. Gul, W. Ahmad, Catalytic efficiency of some novel nanostructured heterogeneous solid catalysts in pyrolysis of HDPE, Polym. Degrad. Stab. 98 (2013) 2512–2519.

DOI: 10.1016/j.polymdegradstab.2013.09.009

Google Scholar

[7] Y. Hu, J. Yang, J. Tian, L. Jia, J.S. Yu, Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags, RSC Adv. 4 (2014) 47169–47176.

DOI: 10.1039/c4ra08306g

Google Scholar

[8] H. Wang, Z. Wei, H. Matsui, S. Zhou, Fe3O4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst, J. Mater. Chem. A 2 (2014) 15740–15745.

DOI: 10.1039/c4ta03130j

Google Scholar

[9] Y. Han, H. Huang, H. Zhang, Y. Liu, X. Han, R. Liu, H. Li, Z. Kang, Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations, ACS Catal. 4 (2014) 781−787.

DOI: 10.1021/cs401118x

Google Scholar

[10] X. Guo, H. Zhang, H. Sun, M.O. Tade, S. Wang, green synthesis of carbon quantum dots for sensitized solar cells, ChemPhotoChem 1 (2017) 116–119.

DOI: 10.1002/cptc.201600038

Google Scholar

[11] Y. Hu, Z. Gao, J. Yang, H. Chen, L. Han, Environmentally benign conversion of waste polyethylene terephthalate to fluorescent carbon dots for 'on-off-on, sensing of ferric and pyrophosphate ions, J. Colloid Interface Sci. 538 (2019) 481–488.

DOI: 10.1016/j.jcis.2018.12.016

Google Scholar

[12] R. Malik, S. Lata, U. Soni, P. Rani, R.S. Malik, Carbon quantum dots intercalated in polypyrrole (PPy) thin electrodes for accelerated energy storage, Electrochim. Acta 364 (2020) 137281.

DOI: 10.1016/j.electacta.2020.137281

Google Scholar

[13] A. Kumari, A. Kumar, S.K. Sahu, S. Kumar, Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging, Sens. Actuators, B 254 (2018) 197–205.

DOI: 10.1016/j.snb.2017.07.075

Google Scholar

[14] S. Mondal, E.K. Karthik, L. Sahoo, K. Chatterjee, M. Sathish, U.K. Gautam, High and reversible oxygen uptake in carbon dot solutions generated from polyethylene facilitating reactant-enhanced solar light harvesting, Nanoscale 12 (2020) 10480–10490.

DOI: 10.1039/d0nr00266f

Google Scholar

[15] M.I.S.D. Cruz, N. Thongsai, M.D.G. de Luna, I. In, P. Paoprasert, Preparation of highly photoluminescent carbon dots from polyurethane: Optimization using response surface methodology and selective detection of silver (I) ion, Colloids Surf., A 568 (2019) 184–194.

DOI: 10.1016/j.colsurfa.2019.02.022

Google Scholar

[16] J. Chattopadhyay, C. Kim, R. Kim, D. Pak, Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics, Korean J. Chem. Eng. 25 (2008) 1047–1053.

DOI: 10.1007/s11814-008-0171-6

Google Scholar

[17] J.H. Lin, Y.J. Pan, C.F. Liu, C.L. Huang, C.T. Hsieh, C.K. Chen, Z.I. Lin, C.W. Lou, Preparation and compatibility evaluation of polypropylene/high-density polyethylene polyblends, Materials 8 (2015) 8850–8859.

DOI: 10.3390/ma8125496

Google Scholar

[18] S.H. Song, M. Jang, H. Yoon, Y.H. Cho, S. Jeon, B.H. Kim, Size and pH-dependent photoluminescence of graphene quantum dots with low oxygen content, RSC Adv. 6 (2016) 97990–97994.

DOI: 10.1039/c6ra21651j

Google Scholar

[19] H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism, ACS Nano, 10 (2016) 484–491.

DOI: 10.1021/acsnano.5b05406

Google Scholar

[20] E.A. Stepanidenko, I.A. Arefina, P.D. Khavlyuk, A. Dubavik, K.V. Bogdanov, D.P. Bondarenko, S.A. Cherevkov, E.V. Kundelev, A.V. Fedorov, A.V. Baranov, V.G. Maslov, E.V. Ushakova, A.L. Rogach, Influence of the solvent environment on luminescent centers within carbon dots, Nanoscale 12 (2020) 602–609.

DOI: 10.1039/c9nr08663c

Google Scholar

[21] A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon, M. Sharon, Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel, Mater. Sci. Eng., C 33 (2013) 2914–2917.

DOI: 10.1016/j.msec.2013.03.018

Google Scholar