[1]
I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment, Nanotechnol., Sci. Appl. 8 (2015) 1–17.
DOI: 10.2147/nsa.s43773
Google Scholar
[2]
J. Krogh, S. Lyons, C.J. Lowe, Pharmaceuticals and personal care products in municipal wastewater and the marine receiving environment near Victoria Canada, Front. Mar. Sci. 4 (2017) 415.
DOI: 10.3389/fmars.2017.00415
Google Scholar
[3]
C.G. Daughton, Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis, Sci. Total Environ. 562 (2016) 391–426.
DOI: 10.1016/j.scitotenv.2016.03.109
Google Scholar
[4]
N. Li, T. Zhang, G. Chen, J. Xu, G. Ouyang, F. Zhu, Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples, TrAC, Trends Anal. Chem. 142 (2021) 116318.
DOI: 10.1016/j.trac.2021.116318
Google Scholar
[5]
M.D. Farahani, F. Shemirani, Ferrofluid based dispersive-solid phase extraction for spectrophotometric determination of dyes, J. Colloid Interface Sci. 407 (2013) 250–254.
DOI: 10.1016/j.jcis.2013.05.035
Google Scholar
[6]
D. Yang, G. Li, L. Wu, Y. Yang, Ferrofluid-based liquid-phase microextraction: Analysis of four phenolic compounds in milks and fruit juices, Food Chem. 261 (2018) 96–102.
DOI: 10.1016/j.foodchem.2018.04.038
Google Scholar
[7]
A.K. El-Deen, K. Shimizu, Application of D-limonene as a bio-based solvent in low density-dispersive liquid–liquid microextraction of acidic drugs from aqueous samples, Anal. Sci. 35 (2019) 1385–1391.
DOI: 10.2116/analsci.19p360
Google Scholar
[8]
P. Zohrabi, M. Shamsipur, M. Hashemi, B. Hashemi, Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid, Talanta 160 (2016) 340–346.
DOI: 10.1016/j.talanta.2016.07.036
Google Scholar
[9]
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
DOI: 10.1021/nn1006368
Google Scholar
[10]
T. Gadly, P.K. Mohapatra, D.K. Patre, R.B. Gujar, A. Gupta, A. Ballal, S.K. Ghosh, Superparamagnetic graphene oxide – magnetite nanoparticle composites for uptake of actinide ions from mildly acidic feeds, J. Chromatogr. A 1513 (2017) 18–26.
DOI: 10.1016/j.chroma.2017.07.008
Google Scholar
[11]
M. Niakan, M. Masteri-Farahani, H. Shekaari, S. Karimi, Pd supported on clicked cellulose-modified magnetite-graphene oxide nanocomposite for C-C coupling reactions in deep eutectic solvent, Carbohydr. Polym. 251 (2021).
DOI: 10.1016/j.carbpol.2020.117109
Google Scholar
[12]
S.M. Majidi, M.R. Hadjmohammadi, Alcohol-based deep eutectic solvent as a carrier of SiO2@Fe3O4 for the development of magnetic dispersive micro-solid-phase extraction method: Application for the preconcentration and determination of morin in apple and grape juices, diluted and acidic extract of dried onion and green tea infusion samples, J. Sep. Sci. 42 (2019) 2842–2850.
DOI: 10.1002/jssc.201900234
Google Scholar
[13]
N. Lamei, M. Ezoddin, M.S. Ardestani, K. Abdi, Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assistance for preconcentration of methadone in biological and water samples followed by GC–FID and GC–MS, Anal. Bioanal. Chem. 409 (2017) 6113–6121.
DOI: 10.1007/s00216-017-0547-8
Google Scholar
[14]
N. Mehrabi, U.F.A. Haq, M.T. Reza, N. Aich, Application of deep eutectic solvent for conjugation of magnetic nanoparticles onto graphene oxide for lead(II) and methylene blue removal, J. Environ. Chem. Eng. 8 (2020) 104222.
DOI: 10.1016/j.jece.2020.104222
Google Scholar
[15]
J. Zhao, G. Liang, X. Zhang, X. Cai, R. Li, X. Xie, Z. Wang, Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water, Sci. Total Environ. 688 (2019) 1205–1215.
DOI: 10.1016/j.scitotenv.2019.06.287
Google Scholar
[16]
A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples, J. Chromatogr. A 1553 (2018) 32–42.
DOI: 10.1016/j.chroma.2018.04.023
Google Scholar
[17]
X. Song, R. Zhang, T. Xie, S. Wang, J. Cao, Deep eutectic solvent micro-functionalized graphene assisted dispersive micro solid-phase extraction of pyrethroid insecticides in natural products, Front. Chem. 7 (2019) 594.
DOI: 10.3389/fchem.2019.00594
Google Scholar
[18]
A. Ghasemi, M.R. Jamali, Z. Es'haghi, Ultrasound-assisted ferrofluid dispersive liquid-phase microextraction coupled with flame atomic absorption spectroscopy for the determination of cobalt in environmental samples, Anal. Lett. 54 (2021) 378–393.
DOI: 10.1080/00032719.2020.1765790
Google Scholar
[19]
N. Jamil, S.M. Khan, N. Ahsan, J. Anwar, A. Qadir, M. Zameer, U. Shafique, Removal of direct red 16 (textile dye) from industrial effluent by using feldspar, J. Chem. Soc. Pak. 36 (2014) 191–197.
Google Scholar