Plastic Waste Recycle into Pellet: Economic Analysis and Processing Temperature Effects

Article Preview

Abstract:

Waste from plastic products can be considered complex materials, making recycling a challenge. PET and LDPE are common type of plastic that is easily found in garbage pile. This research was conducted to study the potential of plastic waste conversion into solid fuel to reduce the accumulation of this waste in the environment. The conversion method is to use an extruder. An economic analysis was performed to measure the feasibility of this recycling method. PET and LDPE plastic waste were recycled into pellets using simple heated-extruder equipment after being shredded into small flakes. The extruder temperature was varied at 120OC, 130OC, 140OC, 150OC, 160OC, and 180OC. The optimum temperature for LDPE pellets is 120OC, and PET pellets is 130OC. The highest density LDPE pellets is 966.7 kg/m3, and PET pellets is 1320 kg/m3. The highest compressive strength LDPE pellets is 1041.1 kg/m2, and PET pellets is 615.2 kg/m2. The calorific value of the recycled LDPE and PET pellets is 43.52 mJ/kg and 27.26 mJ/kg, respectively. The moisture value in each plastic pellet did not change significantly by temperature difference. Meanwhile, the economic feasibility analysis shows an NPV of Rp4,394,049,079; IRR of 25.18%; B/CR of 1.465; and PP of 5.95 years.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-136

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The Central Bureau of Statistics, Indonesian Environmental Statistics 2018, The Central Bureau of Statistics, p.1–43, (2018).

Google Scholar

[2] United Nations Environment Programme, Single-Use Plastics: A Roadmap for Sustainability, The International Environmental Technology Centre, Osaka, (2018).

Google Scholar

[3] OA Alabi, KI. Ologbonjaye, O. Awosolu, O.E. Alalade, Public and environmental health effects of plastic wastes disposal: A review, J. Toxicol. Risk Assess. 5 (2009), 021.

Google Scholar

[4] YA Hidayat, S. Kiranamahsa, M.A. Zamal, A study of plastic waste management effectiveness in Indonesia industries, AIMS Energy 7 (2019) 350–370.

DOI: 10.3934/energy.2019.3.350

Google Scholar

[5] National Plastic Action Partnership, Radically Reducing Plastic Pollution in Indonesia: A Multistakeholder Action Plan, World Economic Forum, (2020).

Google Scholar

[6] L. Warlina, Pengelolaan sampah plastik untuk mitigasi bencana lingkungan, in: Diki, S. Utami, Y.T. Hewindati, E, Herlinawati (Eds.), Peran Matematika, Sains dan Teknologi dalam Kebencanaan, Universitas Terbuka, Banten, 2019, p.89–110.

Google Scholar

[7] A.D. Astuti, J. Wahyudi, A. Ernawati, S.Q. Aini, Kajian pendirian usaha biji plastik di kabupaten Pati, Jawa Tengah, Jurnal Litbang: Media Informasi Penelitian, Pengembangan dan Iptek 16 (2020) 95–112.

DOI: 10.33658/jl.v16i2.204

Google Scholar

[8] H. Chandara, Sunjoto, Sarto, Plastic recycling in Indonesia by converting plastic wastes (PET, HDPE, LDPE, and PP) into plastic pellets, AJSE 3 (2016) 65–72.

DOI: 10.22146/ajse.v3i2.17162

Google Scholar

[9] H. Sawir, Pemanfaatan sampah plastik menjadi briket sebagai bahan bakar alternatif dalam kiln di pabrik PT Semen Padang, Jurnal Sains dan Teknologi 16 (2016) 1–8.

DOI: 10.36275/stsp.v16i1.56

Google Scholar

[10] M.P. Groover, Fundamentals of Modern Manufacturing Materials Processes and Systems, 4th ed., John Wiley & Sons, Hoboken, New Jersey, (2010).

Google Scholar

[11] A. Hafiz, Aplikasi penghitungan pemakaian listrik rumah tangga berbasis android, JuPerSaTeK 2 (2019), 1–8.

Google Scholar

[12] Ministry of Energy and Mineral Resources Republic of Indonesia, Peraturan Menteri Energi dan Sumber Daya Mineral tentang Pembelian Tenaga Listrik dari Pembangkit Listrik Tenaga Surya Fotovoltaik oleh PT Perusahaan Listrik Negara (Persero), Permen ESDM No. 19 Tahun 2016, p.13–19, (2016).

DOI: 10.32520/das-sollen.v5i1.1647

Google Scholar

[13] European Commission, Guide to Cost-Benefit Analysis of Investment Projects no. 1910, The European Commission, (2008).

Google Scholar

[14] RTS. Siagian, M.S. Surbakti, Preliminary Analysis of Economic and Financial Feasibility in Medan City Monorail Planning, The 18th FSTPT International Symposium, University of Lampung, (2015).

Google Scholar

[15] H. Umar, Studi Kelayakan Bisnis, Gramedia Pustaka Utama, Jakarta, (2003).

Google Scholar

[16] M. Giatman, Ekonomi Teknik, 3rd ed., PT Raja Grafindo Persada, Jakarta, (2013).

Google Scholar

[17] W. Hielg, R. Janssen, Advancement of Pellets-related European Standards, WIP Renewable Energies, Munich, (2009).

Google Scholar

[18] G.I. Bisharat, V.P. Oikonomopoulou, N.M. Panagiotou, M.K. Krokida, Z.B. Maroulis, Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables, Food Research International, 53 (2013) 1–14.

DOI: 10.1016/j.foodres.2013.03.043

Google Scholar

[19] J. Goff, T. Whelan, D. Delaney, The Dynisco Extrusion Processors Handbook, 2nd ed., Dynisco Inc., Franklin, Massachusetts, (2000).

Google Scholar

[20] O. Kurniawan, Marsono, Superkarbon: Bahan Bakar Alternatif Pengganti Minyak Tanah dan Gas, Penebar Swadaya, Jakarta, (2008).

Google Scholar

[21] B. Jabłonska, P. Kiełbasa, M. Korenko, T. Drózdz, Physical and chemical properties of waste from PET bottles washing as a component of solid fuels, Energies 12 (2019) 2197.

DOI: 10.3390/en12112197

Google Scholar

[22] W. Paramita, DM Hartono, T.E.B. Soesilo, Sustainability of refuse derived fuel potential from municipal solid waste for cement's alternative fuel in Indonesia (A case at Jeruklegi landfill, in Cilacap), IOP Conf. Ser.: Earth Environ. Sci. 159 (2018) 012027.

DOI: 10.1088/1755-1315/159/1/012027

Google Scholar