Regulate and Control Grain Structure Characteristics and Mechanical Properties Control of Al-Zn-Mg-Cu Alloy

Article Preview

Abstract:

Grain characteristics are one of the most important factors in determining alloy properties. Thermal deformation and solution treatment experiments were used to investigate the evolution of grain features and mechanical properties of Al-9.39 Zn-1.92 Mg-1.98 Cu alloy. The results reveal that when the deformation temperature rises, the recrystallized grain size, recrystallization fraction, and sub-grain size for the alloy's final microstructure gradually increase. The recrystallized grain size and fraction increase as the solution temperature rises, although the sub-grain size of the final microstructure of the corresponding alloy changes slightly. Fitting is used to deriving the function of recrystallization size, recrystallization fraction, and sub-grain size as a function of deformation temperature. The tensile properties of the alloy at T6 state are the best after deformation at 400°C and solution treatment at 470°C. The brittle fracture mode is shown in recrystallized grains, whereas the toughness fracture mode is shown in sub-grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-92

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Mukhopadhyay, Microstructure and properties of high strength aluminium alloys for structural applications, T. Indian I. Metals. 62 (2009) 113-122.

DOI: 10.1007/s12666-009-0015-z

Google Scholar

[2] N. M. Han, X. M. Zhang, S. D. Liu, et al, Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050, J. Alloys Compd. 509 (2011) 4138-4145.

DOI: 10.1016/j.jallcom.2011.01.005

Google Scholar

[3] H. T. Jeong, W. J. Kim, Comparison of hot deformation behavior characteristics between as-cast and extruded Al-Zn-Mg-Cu (7075) aluminum alloys with a similar grain size, Materials. 12(2019): 3807.

DOI: 10.3390/ma12233807

Google Scholar

[4] N. U. Deshpande, A. M. Gokhale, D. K. Denzer, et al, Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization, Metall. Mater. Trans. A. 29 (1998) 1191-1201.

DOI: 10.1007/s11661-998-0246-3

Google Scholar

[5] J. Zuo, L. Hou, J. Shi, et al, Effect of deformation induced precipitation on grain refinement and improvement of mechanical properties AA 7055 aluminum alloy, Mater. Charact. 130 (2017) 123-134.

DOI: 10.1016/j.matchar.2017.05.038

Google Scholar

[6] S. Y. Chen, K. H. Chen, L. Jia, et al, Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy, Trans. Nonferrous Met. Soc. China. 23 (2013) 329-334.

DOI: 10.1016/s1003-6326(13)62465-6

Google Scholar

[7] M. Wang, L. Huang, W. Liu, et al, Influence of cumulative strain on microstructure and mechanical properties of multi-directional forged 2A14 aluminum alloy, Mater. Sci. Eng. A. 674 (2016) 40-51.

DOI: 10.1016/j.msea.2016.07.072

Google Scholar

[8] Z. Q. Xie, Z. H. Jia, K. Y. Xiang, et al, Microstructure evolution and recrystallization resistance of a 7055 alloy fabricated by spray forming technology and by conventional ingot metallurgy, Metall. Mater. Trans. A. 51 (2020) 5378-5388.

DOI: 10.1007/s11661-020-05931-w

Google Scholar

[9] K. F. Adam, J. M. Root, Z. Long, et al, Modeling the controlled recrystallization of particle-containing aluminum alloys, J. Mater. Eng. Perform. 26 (2017) 207-213.

DOI: 10.1007/s11665-016-2436-2

Google Scholar

[10] K. F. Adam, Z. Long, D. P. Field, Analysis of particle-stimulated nucleation (PSN)-dominated recrystallization for hot-rolled 7050 aluminum alloy, Metall. Mater. Trans. A. 48 (2017) 2062-2076.

DOI: 10.1007/s11661-017-3967-3

Google Scholar

[11] L. Wei, Q. Pan, Y. Wang, et al, Characterization of fracture and fatigue behavior of 7050 aluminum alloy ultra-thick plate, J. Mater. Eng. Perform. 22 (2013) 2665-2672.

DOI: 10.1007/s11665-013-0561-8

Google Scholar

[12] X. Fan, D. Jiang, Z. Li, et al, Influence of microstructure on the crack propagation and corrosion resistance of Al-Zn-Mg-Cu alloy 7150, Mater. Charact. 58 (2007) 24-28.

DOI: 10.1016/j.matchar.2006.03.003

Google Scholar