[1]
T. Dursun, C. Soutis, Recent developments in advanced aircraft Aluminium alloys, Mater. Des. 56 (2014) 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[2]
R.J. Rioja, J. Liu, The evolution of Al-Li base products for aerospace and space applications, Metall. Mater. Trans. A. 43 (2012) 3325-3337.
DOI: 10.1007/s11661-012-1155-z
Google Scholar
[3]
E.J. Lavernia, T.S. Srivatsan and F.A. Mohamed, Strength, deformation, fracture behaviour and ductility of Aluminium-Lithium alloys, J. Mater. Sci. 25 (1990) 1137-1158.
DOI: 10.1007/bf00585420
Google Scholar
[4]
N.E. Prasad, A. Gokhale and R.J.H. Wanhill, Aluminum-Lithium alloys: processing, properties, and applications, Elsevier Ltd, Oxford, (2013).
Google Scholar
[5]
W.A. Cassada, G.J. Shiflet, E.A. Starke, The effect of plastic deformation on Al2CuLi (T1) precipitation, Metall. Mater. Trans. A, 22 (1991) 299-306.
DOI: 10.1007/bf02656799
Google Scholar
[6]
S.P. Ringer, B.C. Muddle, I.J. Polmear, Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys, Metall. Mater. Trans. A, 26 (1995) 1659-1671.
DOI: 10.1007/bf02670753
Google Scholar
[7]
B.M. Gable, A.W. Zhu, A.A. Csontos, et al, The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy, J. Light Met. 1 (2001) 1-14.
DOI: 10.1016/s1471-5317(00)00002-x
Google Scholar
[8]
D. Tsivoulas, P. Prangnell, Comparison of the effect of individual and combined Zr and Mn additions on the fracture behavior of Al-Cu-Li alloy AA2198 rolled sheet, Metall. Mater. Trans. A, 45 (2014) 1338-1351.
DOI: 10.1007/s11661-013-2103-2
Google Scholar
[9]
G. Itoh, Q. Cui and M. Kanno, Effects of a small addition of Mg and Ag on the precipitation of T1 phases in an Al-4%Cu-1.1%Li-0.2%Zr alloy, Mater. Sci. Eng. A, 211 (1996) 128-137.
DOI: 10.1016/0921-5093(95)10157-8
Google Scholar
[10]
V. Araullo-Peters, B. Gault, F. De Geuser, et al, Microstructural evolution during ageing of Al-Cu-Li-X alloys, Acta Mater. 66 (2014) 199-208.
DOI: 10.1016/j.actamat.2013.12.001
Google Scholar
[11]
B.I. Rodgers, P.B. Prangnell, Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195, Acta Mater. 108 (2016) 55-67.
DOI: 10.1016/j.actamat.2016.02.017
Google Scholar
[12]
J. Zhang, Z. Li, F. Xu, et al, Regulating effect of pre-stretching degree on the creep aging process of Al-Cu-Li alloy, Mater. Sci. Eng. A, 763 (2019) 138157.
DOI: 10.1016/j.msea.2019.138157
Google Scholar
[13]
E. Gumbmann, W. Lefebvre, F. De Geuser, et al, The effect of minor solute additions on the precipitation path of an Al-Cu-Li alloy, Acta Mater. 115 (2016) 104-114.
DOI: 10.1016/j.actamat.2016.05.050
Google Scholar
[14]
F. Dong, S. Huang, Y. Yi, et al, Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al-Li alloy, Mater. Sci. Eng. A, 834 (2022) 142585.
DOI: 10.1016/j.msea.2021.142585
Google Scholar
[15]
S. Duan, F. Guo, D. Wu, et al, Influences of pre-rolling deformation on aging precipitates and mechanical properties for a novel Al–Cu–Li alloy, J. Mater. Res. Technol. 15 (2021) 2379-2392.
DOI: 10.1016/j.jmrt.2021.09.063
Google Scholar
[16]
Y. Deng, G. Huang, L. Cao, et al, Effect of pre-deformation on the precipitation behavior and mechanical property of Al-Cu-Li-Mn-Zr alloy, Mater. Rep. 32 (2018) 569-573.
Google Scholar
[17]
E. Hornbogen, Formation of nm-size dispersoids from supersaturated solid solutions of Aluminium, Mater. Sci. Forum, 331-337 (2000) 879-888.
DOI: 10.4028/www.scientific.net/msf.331-337.879
Google Scholar
[18]
D.Y. Li, L.Q. Chen, Computer simulation of stress-oriented nucleation and growth of θ' precipitates in Al-Cu alloys, Acta Mater. 46 (1998) 2573-2585.
DOI: 10.1016/s1359-6454(97)00478-3
Google Scholar
[19]
J.C. Huang, A.J. Ardell, Strengthening mechanisms associated with T1 particles in two Al-Li-Cu alloys, J. Phys. Colloques, 48 (1987) C3-373-C3-383.
DOI: 10.1051/jphyscol:1987343
Google Scholar