Potential Al-Fe Cast Alloys for Motor Applications in Electric Vehicles: An Overview

Article Preview

Abstract:

Iron is the main component of the earth's core, the most abundant element on the earth (about 35%), and it is relatively high in the sun and other stars. Also, it is a common and cheap metal in the manufacturing industry. Recently, with the rapid development of electric vehicles, more and more automotive companies are willing to develop new lightweight material for electric motors used in electrical vehicles. The iron–containing aluminum alloys can be considered as a good candidate, due to its great strength and electricity performance. This review describes various properties of aluminum-iron alloys including mechanical properties and electrical conductivities, as well their relation to the Fe contents. Also, metallurgical aspects of aluminum-iron alloys, including phase diagrams, equilibrium and non-equilibriun solidification, microstructure development, and castability. The further research and development work are outlined in terms of developing aluminum-iron alloys for some potential and value-added automotive applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-19

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Palanivel, C. Kuehmann, R. J. Stucki, E. Filip, and Edwards, Aluminum alloys for die casting, WO/2020/028730. U.S. Patent and Trademark Office. (2020).

Google Scholar

[2] X. Li, A. Scherf, M. Heilmaier, and F. Stein, The Al-Rich Part of the Fe-Al Phase Diagram, Journal of Phase Equilibria and Diffusion. 37(2), (2016) 162–173.

DOI: 10.1007/s11669-015-0446-7

Google Scholar

[3] Information on https://www.britannica.com/science/iron-chemical-element/Compounds, retrieved in Feb. (2021).

Google Scholar

[4] L. Lu and A.K. Dahle, Iron-Rich Intermetallic Phases and Their Role in Casting Defect Formation in Hypoeutectic Al-Si Alloys, Metall. Mater. Trans. A, 36A (2005) 819-835.

DOI: 10.1007/s11661-005-0196-y

Google Scholar

[5] M. Y. Murashkin, I., Sabirov, X., Sauvage, & R. Z. Valiev, Nanostructured Al and Cu alloys with superior strength and electrical conductivity, Journal of materials science. 51(1), (2016) 33-49.

DOI: 10.1007/s10853-015-9354-9

Google Scholar

[6] W. D. Callister and D. G. Rethwisch, Materials science and engineering: An introduction. tenth ed. Hoboken, New York, (2020).

Google Scholar

[7] Information on http://www.nde-ed.org/EducationResourse/CommunityCollege/Material/Physical_Chemical/Electrical.htm, retrieved in Feb. (2021).

Google Scholar

[8] Information on https://materion.com/-/media/files/alloy/newsletters/technical-tidbits/issue-no-106---a-bridge-too-far---measuring-electrical-conductivity.pdf, retrieved in Feb. (2021).

Google Scholar

[9] Information on http://eddy-current.com/conductivity-of-metals-sorted-by-resistivity/, retrieved in Feb. (2021).

Google Scholar

[10] T. H. G. Megson, Structural and stress analysis, Butterworth-Heinemann, Oxfold, (2019).

Google Scholar

[11] G. E. Totten, and D. S. MacKenzie (Eds.). Handbook of aluminum: vol.1: physical metallurgy and processes, Marcel Dekker, New York, (2003).

Google Scholar

[12] N.P. Lyakishev, (ed.) Phase Diagrams of Binary Metallic Systems, Mashinostroenie, vol. 1, Moscow, 1996, pp.144-148.

Google Scholar

[13] N. A. Belov, A. A. Aksenov, and, D. G. Eskin. Iron in aluminium alloys: impurity and alloying element, Taylor & Francis, London, (2002).

DOI: 10.1201/9781482265019

Google Scholar

[14] A. Griger, V. Stefaniay, and T. Tunnezey, Z Metallkde., Chrystallographic data and chemical compositions of aluminiumrich Al-Fe intermetallic phases, Zeitschrift für Metallkunde. 77(1), (1986) 30-35.

Google Scholar

[15] 1. E. Hatch, (ed.), Aluminum: Properties and Physical Metallurgy, Metals Park, ASM. (1984).

Google Scholar

[16] D. J. Skinner, M. Zedalis, Elastic modulus versus melting temperature in aluminum based intermetallics, Scr. Metall. 22(11), (1989) 1783-1785.

DOI: 10.1016/s0036-9748(88)80284-9

Google Scholar

[17] D.G. Eskin, L.S. Toropova, Tensile and elastic properties of deformed heterogeneous aluminum alloys at room and elevated temperatures, Mater. Sci. Eng. A. A183 (1994) Ll-L4.

DOI: 10.1016/0921-5093(94)90913-x

Google Scholar

[18] I. F. Kolobnev, Heat Resistance of Cast Aluminum Alloys, Metallurgiya, Moscow, (1973).

Google Scholar

[19] V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov, Rapidly crystallized aluminum alloys, VILS, Moscow, (1995).

Google Scholar

[20] D. Liang, P. Korgul, and H. Jones, Composition and solidification microstructure selection in the interdendritic matrix between primary Al3Fe dendrites in hypereutectic Al-Fe alloys, Acta Mater. 44(7), (1996) 2999-3004.

DOI: 10.1016/1359-6454(95)00381-9

Google Scholar

[21] S. Kasap, Springer handbook of electronic and photonic materials. Springer Science & Business Media, Wurzburg, (2006).

Google Scholar

[22] A. Matthiessen, C, Vogt, On the influence of temperature on the electric conducting-power of alloys, Philos Trans R Soc Lond. 154 (1864) 167–200.

Google Scholar

[23] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science. 304 (2004) 422–426.

DOI: 10.1126/science.1092905

Google Scholar

[24] F.l. Kvasov, L. N. Fridlyander (eds.), Commercial Aluminum Alloys, Metallurgiya, Moscow, (1984).

Google Scholar

[25] L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, (1976).

Google Scholar

[26] J.Y. Barghout, G.W. Lorimer, R. Pilkington, and P.B. Prangnell, in Proc. ICAA5, Mater. Sci. Forum, vols. 217-222, Zuerich, Transtec Publications, Part 2, Grenoble, 1996, pp.975-980.

DOI: 10.4028/www.scientific.net/msf.217-222.975

Google Scholar

[27] T. Shikagawa, G. Itoh, S. Suzuki, H. Kuroda, and T. Horikoshi, Effect of small additions of Fe on the tensile properties and electrical conductivity of aluminium wires, Materials science forum Trans Tech Publications. 519 (2006) 515-518.

DOI: 10.4028/www.scientific.net/msf.519-521.515

Google Scholar

[28] M. Jabłoński, T. A. Knych, and B. Smyrak, New aluminium alloys for electrical wires of fine diameter for automotive industry, Archives of Metallurgy and Materials. 54(3), (2009) 672-676.

Google Scholar

[29] S. Kotiadis, A. Zimmer, A. Elsayed, E. Vandersluis & C. Ravindran, High Electrical and Thermal Conductivity Cast Al-Fe-Mg-Si Alloys with Ni Additions, Metallurgical and Materials Transactions A. 51 (2020) 4195–4214.

DOI: 10.1007/s11661-020-05826-w

Google Scholar

[30] B.I. Bondarev, v.I. Napalkov, and V.I. Tararyshkin, Refinement of Wrought Aluminum Alloys, Metallurgiya, Moscow, (1979).

Google Scholar

[31] J. Campbell, Castings, Butterworth Heinemann, Oxford, 2000, 74-78, 219-231.

Google Scholar

[32] J. Campbell, Casting Practice – the 10 Rules of Castings, Butterworth Heinemann, Oxford, 2007, pp.120-175.

Google Scholar

[33] T. Koutsoukis and M.M. Makhlouf, Alternatives to the Al–Si Eutectic System in Aluminum Casting Alloys, Int. J. Metalcast. 10 (2016) 342–347.

DOI: 10.1007/s40962-016-0042-6

Google Scholar

[34] J.R. Davis, Aluminum and Aluminum Alloys, ASM Specialty Handbook, ASM International, Materials Park, USA, 2002, 723.

Google Scholar

[35] J. Shin, S. Ko, K. Kim, Development and characterization of low-silicon cast aluminum alloys for thermal dissipation, Journal of Alloys and Compounds. 644 (2015) 673–686.

DOI: 10.1016/j.jallcom.2015.04.230

Google Scholar

[36] S. Li, Hot Tearing in Cast Aluminum Alloys: Measures and Effects of Process Variables, PhD dissertation, Worcester Polytechnic Institute, USA, (2010).

Google Scholar

[37] T. O. Mbuya, B. O. Odera & S. P. Ng'ang'a, Influence of iron on castability and properties of aluminum silicon alloys: literature review, Int. J. Cast Metal. Res. 16 (2003) 451–65.

DOI: 10.1080/13640461.2003.11819622

Google Scholar

[38] D Apelian, Principles of Solidification, ASM Handbook Volume 15: Casting, ASM International, Materials Park, OH, USA, 2008, pp.267-376.

Google Scholar

[39] J.A. Taylor, G.B. Schaffer, and D.H. StJohn, The Role of Iron in the Formation of Porosity in Al-Si-Cu–Based Casting Alloys: Part I. Initial Experimental Observations Metall. Mater. Trans. A., 30A (1999) 1643-50.

DOI: 10.1007/s11661-999-0101-1

Google Scholar

[40] J.A. Taylor, G.B. Schaffer, and D.H. StJohn, The Role of Iron in the Formation of Porosity in Al-Si-Cu–Based Casting Alloys: Part II. A Phase-Diagram Approach, Metall. Mater. Trans. A. 30A (1999) 1651-55.

DOI: 10.1007/s11661-999-0102-0

Google Scholar

[41] J.A. Taylor, G.B. Schaffer, and D.H. StJohn, The Role of Iron in the Formation of Porosity in Al-Si-Cu–Based Casting Alloys: Part III. A Microstructural Model Metall. Mater. Trans. A. 30A, (1999) 1657-62.

DOI: 10.1007/s11661-999-0103-z

Google Scholar