Effects of Nb and o Contents on the Negative Linear Thermal Expansion Behaviors of Cold Rolled Ti-34Nb Alloys

Article Preview

Abstract:

In this study, the effects of Nb and O contents on the negative thermal expansion behaviors including the coefficient of negative thermal expansion and matensite (α) stability of cold rolled (CR) Ti-34Nb alloys was investigated by optical microscopy, X-ray diffraction and Thermomechanical analysis. Results show that texture strength of CR-Ti-xNb-xO alloys is related to β stability, the addition of Nb and O (β stabilizers) enhances the texture strength. XRD results indicate that Nb and O inhibit the formation of α. The coefficient of negative thermal expansion of CR-Ti-xNb-xO alloys decrease with the increase of Nb and O contents. Moreover, cyclic thermal expansion results reveal that Nb and O promote the decomposition of α.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-36

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Kittel, Wiley. (2007).

Google Scholar

[2] J.A. Monroe, D. Gehring, I. Karaman, R. Arroyave, D.W. Brown, B. Clausen, Acta. Mater. 102 (2016) 333-341.

DOI: 10.1016/j.actamat.2015.09.012

Google Scholar

[3] A. Ahadi, Y. Matsushita, T. Sawaguchi, Q.P. Sun, K. Tsuchiya, Acta. Mater. 124 (2017) 79-92.

Google Scholar

[4] R. Kainuma, J.J. Wang, T. Omori, Y. Sutou, K. Ishida, Appl. Phys. Let. 80 (2002) 4348.

Google Scholar

[5] Y. Wang, J.H. Gao, H.J. Wu, S. Yang, X.D. Ding, D. Wang, X.B. Ren, Y.Z. Wang, X.P. Song, J.R. Gao, Sci. Rep. 4 (2014) 3995.

Google Scholar

[6] W. Wang, R. Huang, Y. Zhao, H. Liu, C. Huang, X. Yang, Y. Shan, X. Zhao, L. Li, J Alloy. Compd. 740 (2017) 47-51.

Google Scholar

[7] T. Saito, T. Furuta, Science. 300 (2003) 464-467.

Google Scholar

[8] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, X.L. Feng, M. Ogawa, Mater. Trans. 50 (2009) 423-426.

DOI: 10.2320/matertrans.mrp2008380

Google Scholar

[9] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta. Mater. 54 (2006) 2419-2429.

Google Scholar

[10] Y. Nii, T. Arima, H.Y. Kim, S. Miyazaki, Phys. Rev. B. 82 (2010) 214104.

Google Scholar

[11] X.W. Wu, W.Q. Zou, J.D. Huang, Y.L. Wu, C. Luo, C.B. Lan, F. Chen, J. Mater. Sci. 56 (2021) 5190-5200.

Google Scholar

[12] H.Y. Kim, H. Satoru, J.I. Kim, H. Hosoda, S. Miyazaki, Mater. Trans. 45 (2004) 2443-2448.

Google Scholar

[13] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta. Mater. 59 (2011) 6208-6218.

Google Scholar

[14] P. Barriobero-Vila, V.B. Oliveira, S. Schwarz, T. Buslaps, G. Requena, Acta. Mater. 135 (2017) 132-143.

DOI: 10.1016/j.actamat.2017.06.018

Google Scholar

[15] F.R. Kaschel, R.K. Vijayaraghavan, A. Shmeliov, E.K. McCarthy, M. Canavan, P.J. McNally, D.P. Dowling, V. Nicolosi, M. Celikin, Acta. Mate. 188 (2020) 720-732.

DOI: 10.1016/j.actamat.2020.02.056

Google Scholar

[16] S.W. Lee, C.H. Park, J.K. Hong, Metall. Mater. Trans. A. 49 (2018).

Google Scholar