Synthesis and Characterization of PVDF/Graphene Nanocomposite Membrane for Water Treatment Applications

Article Preview

Abstract:

Membrane technology advancement has gained momentous consideration around the globe because of their appealing highlights, such as effectiveness, low expenses, and effective solutions for longstanding issues in alchemical industries. This study expected to incorporate graphene nanoparticles into Polyvinylidene difluoride (PVDF) to form nanofiltration (NF) layers using DMF (Dimethyl formamide) as solvent via DIPS (diffusion induced phase separation) technique. PVDF polymer membrane performances with varied percent (1 – 6% wt.) of graphene concentrations are studied Infrared spectral, water uptake, water contact angle, and ion rejection measurements. Scanning electron microscope (SEM) analysis showed that the pore size is often regulated by incorporating graphene nanoparticles (80-90 nm) as compared to PVDF membranes. The PVDF membranes exhibited a relative increase in the contact angle from PVDF to PVDF-G6% i.e. 50.3° to 63.46 ± .3, thus, showing a relative increase in hydrophobicity. The higher percent of graphene (> 6% by wt.) results in nanoparticle accumulation that showed the performances of PVDF/graphene rejection possessing relatively the same results. The results confirmed that the prepared membranes possess an excellent ability to treat wastewater.

Info:

Periodical:

Pages:

177-187

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M., Science and technology for water purification in the coming decades. In Nanoscience and technology: a collection of reviews from nature Journals, (2010), 337-346).

DOI: 10.1142/9789814287005_0035

Google Scholar

[2] Qu, X., Brame, J., Li, Q., and Alvarez, P.J., Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Accounts of chemical research, 46 (3), (2012), 834-843.

DOI: 10.1021/ar300029v

Google Scholar

[3] Buonomenna, M.G., Membrane processes for a sustainable industrial growth. RSC advances, 3(17), (2013), 5694-5740.

DOI: 10.1039/c2ra22580h

Google Scholar

[4] Pang, R., Li, X., Li, J., Lu, Z., Sun, X. and Wang, L., Preparation, and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination, 332(1), (2014), 60-66.

DOI: 10.1016/j.desal.2013.10.024

Google Scholar

[5] Li, X., Sotto, A., Li, J. and Van der Bruggen, B., Progress, and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 524, (2017), 502-528.

DOI: 10.1016/j.memsci.2016.11.040

Google Scholar

[6] Liu, L., Shen, F., Zhang, B., Jiang, H., Li, J., Luo, J., Wu, H., Khan, R. and Wan, Y., Fabrication of PES-based membranes with a high and stable desalination performance for membrane distillation. RSC Advances, 6 (109), (2016), 107840-107850.

DOI: 10.1039/c6ra22193a

Google Scholar

[7] Lee, K.P., Arnot, T.C. and Mattia, D., A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 370 (1-2), (2011), 1-22.

DOI: 10.1016/j.memsci.2010.12.036

Google Scholar

[8] Padaki, M., Hegde, C. and Isloor, A.M., Synthesis, Characterization & Impedance Studies of Some New Nano Filtration Membranes. In Materials science forum, Trans Tech Publications. Vol. 657, (2010), 26-34.

DOI: 10.4028/www.scientific.net/msf.657.26

Google Scholar

[9] Mondal, S. and Wickramasinghe, S.R., Produced water treatment by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 322 (1), (2008), 162-170.

DOI: 10.1016/j.memsci.2008.05.039

Google Scholar

[10] Al Malek, S.A., Seman, M.A., Johnson, D. and Hilal, N., Formation, and characterization of polyether sulfone membranes using different concentrations of polyvinylpyrrolidone. Desalination, 288, (2012), 31-39.

DOI: 10.1016/j.desal.2011.12.006

Google Scholar

[11] Zhang, J., Xu, Z., Mai, W., Min, C., Zhou, B., Shan, M., Li, Y., Yang, C., Wang, Z. and Qian, X., Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry A, 1 (9), (2013), 3101-3111.

DOI: 10.1039/c2ta01415g

Google Scholar

[12] Low, Z.X., Wang, Z., Leong, S., Razmjou, A., Dumée, L.F., Zhang, X. and Wang, H., Enhancement of the antifouling properties and filtration performance of poly (ethersulfone) ultrafiltration membranes by incorporation of nanoporous titania nanoparticles. Industrial & Engineering Chemistry Research, 54(44), (2015), 11188-11198.

DOI: 10.1021/acs.iecr.5b03147

Google Scholar

[13] Yang, Y., Zhang, H., Wang, P., Zheng, Q. and Li, J., The influence of nano sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 288(1-2), (2007), 231-238.

DOI: 10.1016/j.memsci.2006.11.019

Google Scholar

[14] Shen, Jiang-nan, Hui-min Ruan, Li-guang Wu, and Cong-jie Gao. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chemical engineering journal 168, No. 3 (2011): 1272-1278.

DOI: 10.1016/j.cej.2011.02.039

Google Scholar

[15] He, T., Zhou, W., Bahi, A., Yang, H. and Ko, F., High permeability of ultrafiltration membranes based on electrospun PVDF modified by nanosized zeolite hybrid membrane scaffolds under low pressure. Chemical Engineering Journal, 252, (2014), 327-336.

DOI: 10.1016/j.cej.2014.05.022

Google Scholar

[16] Boributh, S., Chanachai, A. and Jiraratananon, R., Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 342(1-2), (2009), 97-104.

DOI: 10.1016/j.memsci.2009.06.022

Google Scholar

[17] Shi, F., Ma, Y., Ma, J., Wang, P. and Sun, W., Preparation, and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. Journal of membrane science, 427, (2013), 259-269.

DOI: 10.1016/j.memsci.2012.10.007

Google Scholar

[18] Gao, Y., Hu, M. and Mi, B., Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. Journal of membrane science, 455, (2014), 349-356.

DOI: 10.1016/j.memsci.2014.01.011

Google Scholar

[19] Hegab, H.M. and Zou, L., Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 484, (2015), 95-106.

DOI: 10.1016/j.memsci.2015.03.011

Google Scholar

[20] Bano, S., Mahmood, A., Kim, S.J. and Lee, K.H., Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. Journal of Materials Chemistry A, 3(5), (2015), 2065-2071.

DOI: 10.1039/c4ta03607g

Google Scholar

[21] Yang, Y., Wang, P. and Zheng, Q., Preparation, and properties of polysulfone/TiO2 composite ultrafiltration membranes. Journal of Polymer Science Part B: Polymer Physics, 44(5), (2006), 879-887.

DOI: 10.1002/polb.20715

Google Scholar

[22] Fang, X., Li, J., Li, X., Pan, S., Sun, X., Shen, J., Han, W., Wang, L. and Van der Bruggen, B., Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance. Journal of colloid and interface science, 505, (2017), 642-652.

DOI: 10.1016/j.jcis.2017.06.067

Google Scholar

[23] Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M., Water desalination using nanoporous single-layer graphene. Nature nanotechnology, 10(5), (2015), 459.

DOI: 10.1038/nnano.2015.37

Google Scholar

[24] You, Y., Sahajwalla, V., Yoshimura, M., and Joshi, R.K., Graphene and graphene oxide for desalination. Nanoscale, 8(1), (2016), 117-119.

DOI: 10.1039/c5nr06154g

Google Scholar

[25] Huang, H., Ying, Y. and Peng, X., Graphene oxide nanosheet: an emerging star material for novel separation membranes. Journal of Materials Chemistry A, 2(34), (2014), 13772-13782.

DOI: 10.1039/c4ta02359e

Google Scholar

[26] Huang, Q., Luo, Q., Chen, Z., Yao, L., Fu, P. and Lin, Z., The effect of electrolyte concentration on electrochemical impedance for evaluating polysulfone membranes. Environmental Science: Water Research & Technology, 4(8), (2008), 1145-1151.

DOI: 10.1039/c8ew00225h

Google Scholar

[27] Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C., Multilayer nanoporous graphene membranes for water desalination. Nano letters, 16(2), (2016), 1027-1033.

DOI: 10.1021/acs.nanolett.5b04089

Google Scholar

[28] Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M., Water desalination using nanoporous single-layer graphene. Nature nanotechnology, 10(5), (2015), 459.

DOI: 10.1038/nnano.2015.37

Google Scholar

[29] Koh, D.Y. and Lively, R.P., Nanoporous graphene: Membranes at the limit. Nature Nanotechnology, 10(5), (2015), 385.

Google Scholar

[30] Anand, A., Unnikrishnan, B., Mao, J.Y., Lin, H.J. and Huang, C.C., Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination, 429, (2018), 119-133.

DOI: 10.1016/j.desal.2017.12.012

Google Scholar

[31] Yin, C., Wang, S., Zhang, Y., Chen, Z., Lin, Z., Fu, P. and Yao, L., Correlation between the pore resistance and water flux of the cellulose acetate membrane. Environmental Science: Water Research & Technology, 3(6), (2017), 1037-1041.

DOI: 10.1039/c7ew00274b

Google Scholar

[32] Joshi, R.K., Alwarappan, S., Yoshimura, M., Sahajwalla, V. and Nishina, Y., Graphene oxide: the new membrane material. Applied Materials Today, 1(1), (2015), 1-12.

DOI: 10.1016/j.apmt.2015.06.002

Google Scholar

[33] Rafiee, J., Mi, X., Gullapalli, H., Thomas, A.V., Yavari, F., Shi, Y., Ajayan, P.M. and Koratkar, N.A., Wetting transparency of graphene. Nature materials, 11(3), (2012), 217.

DOI: 10.1038/nmat3228

Google Scholar

[34] Safarpour, M., Khataee, A. and Vatanpour, V., Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. Journal of Membrane Science, 489, (2015), 43-54.

DOI: 10.1016/j.memsci.2015.04.010

Google Scholar