[1]
E. Vojnova, The benefits of a conforming cooling systems the molds in injection molding process, Procedia Eng. 149 (2016) 535 – 543.
DOI: 10.1016/j.proeng.2016.06.702
Google Scholar
[2]
M. F. Bianchi, A.A. Gameros, D.A. Axinte, S. Lowth, A.M. Cendrowicz and S.T. Welch, Regional temperature control in ceramic injection molding: An approach based on cooling rate optimization, J. Manuf. Process. 68 (2021) 1767-1783.
DOI: 10.1016/j.jmapro.2021.06.069
Google Scholar
[3]
M. Lakkanna, G.C.M. Kumar and R. Kadoli, Computation design of mould sprue for injection moulding thermoplastics, J. Comput. Des. Eng. 3 (2016) 37-52.
DOI: 10.1016/j.jcde.2015.06.006
Google Scholar
[4]
D.M. Bryce, Plastic injection molding: manufacturing process fundamentals Dearborn, Michigan: Society of Manufacturing Engineers, 1996, p.253.
Google Scholar
[5]
D.O. Kazmer. Injection Mold Design Engineering 2nd Edition, Hanser Publishers, Munich (2016).
Google Scholar
[6]
R. Mihara, N. Komasawa, S. Matsunami and T. Minami, Comparison of direct and indirect laryngoscopes in vomitus and hematemesis settings: a randomized simulation trial, Biomed. Res. Int. (2015) https://doi.org/10.1155/2015/806243.
DOI: 10.1155/2015/806243
Google Scholar
[7]
G. Llewelyn, A. Rees, C. Griffiths and Jacobi, M. A Design of Experiment Approach for Surface Roughness Comparisons of Foam Injection-Moulding Methods, Materials 13(10) (2020) 2358.
DOI: 10.3390/ma13102358
Google Scholar
[8]
M. Mohan, M.N.M. Ansari and R.A. Shanks, Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component, Polym. Plast. Technol. Eng. 56(1) (2017) 1-12.
DOI: 10.1080/03602559.2015.1132466
Google Scholar
[9]
S. Kashyap and D. Datta, Process parameter optimization of plastic injection molding: a review, Int. J. Plast. Technol. 19(1) (2015) 1-18.
DOI: 10.1007/s12588-015-9115-2
Google Scholar
[10]
C. Fernandes, A.J. Pontes, J.C. Viana and A. Gaspar‐Cunha, Modeling and Optimization of the Injection‐Molding Process: A Review, Adv. Polym. Technol. 37(2) (2018) 429-449.
DOI: 10.1002/adv.21683
Google Scholar
[11]
H. Gao, Y. Zhang, X. Zhou and D. Li, Intelligent methods for the process parameter determination of plastic injection molding, Front. Mech. Eng. 13(1) (2018) 85-95.
DOI: 10.1007/s11465-018-0491-0
Google Scholar
[12]
B.B. Kanbur, S. Suping and F. Duan, Design and optimization of conformal cooling channels for injection molding: a review, Int. J. Adv. Manuf. Technol. 106(7) (2020) 3253-3271.
DOI: 10.1007/s00170-019-04697-9
Google Scholar
[13]
R. Davis and P. John, Application of Taguchi-based design of experiments for industrial chemical processes. In Edited Book. Valter Silva. Statistical approaches with emphasis on design of experiments applied to chemical processes, (2018) 137.
DOI: 10.5772/intechopen.69501
Google Scholar
[14]
J. Antony and F.J. Antony, Teaching the Taguchi method to industrial engineers, Work Study, 50(4) (2001) 141 – 149.
DOI: 10.1108/00438020110391873
Google Scholar
[15]
M. Tanco, E. Viles, L. Ilzarbe and M.J. Álvarez, Manufacturing industries need Design of Experiments (DoE). In World Congress on Engineering, 20 (2007) 1108-1113.
Google Scholar
[16]
F. Hentati, I. Hadriche, N. Masmoudi and C. Bradai, Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation, Int. J. Adv. Manuf. Technol. 104(9) (2019) 4353-4363.
DOI: 10.1007/s00170-019-04283-z
Google Scholar
[17]
C.Y. Chung, Integrated optimum layout of conformal cooling channels and optimal injection molding process parameters for optical lenses, Appl. Sci. 9(20) (2019) 4341.
DOI: 10.3390/app9204341
Google Scholar
[18]
J. Heinisch, Y. Lockner and C. Hopmann, Comparison of design of experiment methods for modeling injection molding experiments using artificial neural networks. J. Manuf. Process, 61 (2021) 357-368.
DOI: 10.1016/j.jmapro.2020.11.011
Google Scholar
[19]
K. Li, S. Yan, Y. Zhong, W. Pan and G. Zhao, Multi-objective optimization of the fiber-reinforced composite injection molding process using Taguchi method, RSM, and NSGA-II, Simul. Model. Pract. Theory. 91 (2019) 69-82.
DOI: 10.1016/j.simpat.2018.09.003
Google Scholar
[20]
T. Kiatcharoenpol, and T. Vichiraprasert, Optimizing and Modeling for Plastic Injection Molding Process using Taguchi Method, In J. Phys. Conf. Ser. 1026(1) (2018) 012018.
DOI: 10.1088/1742-6596/1026/1/012018
Google Scholar
[21]
S.Y. Martowibowo and R. Khloeun, Minimum Warpage Prediction in Plastic Injection Process using Taguchi Method and Simulation, Manuf. Technol. 19(3) (2019) 469-476.
DOI: 10.21062/ujep/314.2019/a/1213-2489/mt/19/3/469
Google Scholar
[22]
H. Rangaswamy, I. Sogalad, S. Basavarajappa, S. Acharya and G.C. Manjunath Patel, Experimental analysis and prediction of strength of adhesive-bonded single-lap composite joints: Taguchi and artificial neural network approaches, SN Appl. Sci. 2 (2020) 1-15.
DOI: 10.1007/s42452-020-2851-8
Google Scholar
[23]
M.J. Sandeep, P.G.C. Manjunath, G.R. Chate, M.B. Parappagoudar and U.M. Daivagna, Multi response optimization of green sand moulding parameters using Taguchi-DEAR method, In Appl. Mech. Mater. 895 (2019) 1-7.
DOI: 10.4028/www.scientific.net/amm.895.1
Google Scholar
[24]
G.R. Chate, G.C.M. Patel, R.M. Kulkarni, P. Vernekar, A.S. Deshpande and M.B. Parappagoudar, Study of the effect of nano-silica particles on resin-bonded moulding sand properties and quality of casting, Silicon. 10(5) (2018) 1921-1936.
DOI: 10.1007/s12633-017-9705-z
Google Scholar
[25]
G.R. Chate, G.C.M. Patel, H.M. Harsha, S.U. Urankar, S.A. Sanadi, A.P. Jadhav and A.S. Deshpande, Sustainable machining: Modelling and optimization using Taguchi, MOORA and DEAR methods, Mater. Today: Proc. 46(18) (2021) 8941-8947.
DOI: 10.1016/j.matpr.2021.05.365
Google Scholar
[26]
G.C.M. Patel, R.S. Kumar, and N.S. Naidu, Optimization of abrasive water jet machining for green composites using multi-variant hybrid techniques. In Optimization of manufacturing processes, (2020) 129-162. Springer, Cham.
DOI: 10.1007/978-3-030-19638-7_6
Google Scholar
[27]
M.P.G. Chandrashekarappa, S. Kumar, D.Y. Pimenov and K. Giasin, Experimental Analysis and Optimization of EDM Parameters on HcHcr Steel in Context with Different Electrodes and Dielectric Fluids Using Hybrid Taguchi-Based PCA-Utility and CRITIC-Utility Approaches. Metals. 11(3) (2021) 419.
DOI: 10.3390/met11030419
Google Scholar
[28]
G.C.M. Patel, N.B. Pradeep, H.M. Harsha and A.K. Shettigar, Experimental analysis and optimization of plasma spray parameters on microhardness and wear loss of Mo-Ni-Cr coated super duplex stainless steel, Aust. J. Mech. Eng. (2020) 1-13. https://doi.org/10.1080/14484846.2020. 1808760.
DOI: 10.1080/14484846.2020.1808760
Google Scholar
[29]
R. Sheshadri, M. Nagaraj, A. Lakshmikanthan, M.P.G. Chandrashekarappa, D.Y. Pimenov, K. Giasin and S. Wojciechowski, Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: Taguchi and Super Ranking Concept Approaches, J. Mater. Res. Technol. 14 (2021) 2586-2600.
DOI: 10.1016/j.jmrt.2021.07.144
Google Scholar
[30]
Tiwary, Vivek Kumar, N. J. Ravi, P. Arunkumar, S. Shivakumar, Anand S. Deshpande, and Vinayak R. Malik, Investigations on friction stir joining of 3D printed parts to overcome bed size limitation and enhance joint quality for unmanned aircraft systems, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234.24 (2020): 4857-4871.
DOI: 10.1177/0954406220930049
Google Scholar
[31]
Tiwary, Vivek Kumar, P. Arunkumar, and Vinayak R. Malik, An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer, Rapid Prototyping Journal (2021).
DOI: 10.1108/rpj-10-2020-0265
Google Scholar
[32]
F. Guo, J. Liu, X. Zhou, H. Wang, Y. Zhang, D. Li and H. Zhou, An effective retrieval method for 3D models in plastic injection molding for process reuse, Appl. Soft Comput. 101 (2021) 107034.
DOI: 10.1016/j.asoc.2020.107034
Google Scholar
[33]
S. Li, X.Y. Fan, Y.H. Guo, X. Liu, H.Y. Huang, Y.L. Cao and L.L. Li, Optimization of Injection Molding Process of Transparent Complex Multi-Cavity Parts Based on Kriging Model and Various Optimization Techniques, Arab. J. Sci. Eng. 46 (2021) 11835–11845.
DOI: 10.1007/s13369-021-05724-2
Google Scholar
[34]
L. Alting and G. Boothroyd, Plastics and Plastic Processing. In Manufacturing Engineering Processes (2020) 343-362. CRC Press.
DOI: 10.1201/9781003067177-11
Google Scholar
[35]
R.C. Vázquez Fletes, E.O. Cisneros López, F.J. Moscoso Sánchez, E. Mendizábal, R.G. Núñez, D. Rodrigue and P.O. Gudiño, Morphological and mechanical properties of bilayers wood-plastic composites and foams obtained by rotational molding, Polymers. 12(3) (2020) 503.
DOI: 10.3390/polym12030503
Google Scholar
[36]
S. Dekker, W. Buesink, M. Blom, M. Alessio, N. Verplanck, M. Hihoud, and M. Odijk, Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens. Actuators B Chem. 272 (2018) 468-478.
DOI: 10.1016/j.snb.2018.04.005
Google Scholar
[37]
D. Serban, G. Lamanna and C.G. Opran, Mixing, Conveying and Injection Molding Hybrid System for Conductive Polymer Composites. Procedia CIRP. 81 (2019) 677-682.
DOI: 10.1016/j.procir.2019.03.175
Google Scholar
[38]
S.A. Uthale, N.A. Dhamal, D.K. Shinde and A.D. Kelkar, Polymeric hybrid nanocomposites processing and finite element modeling: An overview. Sci. Prog. 104(3) (2021) 00368504211029471.
DOI: 10.1177/00368504211029471
Google Scholar
[39]
P. Liu, F. Zuo, H. Zhang, G. Wen and R. Su, Structural response of an injection molding part of the fuser mechanism in laser printer under thermo-mechanical coupling. Adv. Mech. Eng. 11(4) (2019) 1687814019846736.
DOI: 10.1177/1687814019846736
Google Scholar
[40]
F. Marin, A.F. de Souza, C.H. Ahrens and L.N.L. de Lacalle, A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds. Int. J. Adv. Manuf. Technol. 113(5) (2021) 1561-1576.
DOI: 10.1007/s00170-021-06720-4
Google Scholar
[41]
K. Dehnad, Quality control, robust design, and the Taguchi method. Springer Science & Business Media. (2012).
Google Scholar
[42]
R.K. Roy, A primer on the Taguchi method. Dearborn, Michigan: Society of Manufacturing Egineers, (2010).
Google Scholar
[43]
J. Jeevamalar, S.B. Kumar, P. Ramu, G. Suresh and K. Senthilnathan, Investigating the effects of copper cadmium electrode on Inconel 718 during EDM drilling. Mater. Today: Proc. 45 (2021) 1451-1455.
DOI: 10.1016/j.matpr.2020.07.416
Google Scholar
[44]
G. Suresh, T. Srinivasan, A.J. Rajan, R. Aruna, R. Ravi, R. Vignesh and G.S. Krishnan, A study of delamination characteristics (drilling) on carbon fiber reinforced IPN composites during drilling using design experiments. In IOP Conf. Ser.: Mater. Sci. Eng. 988(1) (2020) 012008. IOP Publishing.
DOI: 10.1088/1757-899x/988/1/012008
Google Scholar
[45]
R. Azad and H. Shahrajabian, Experimental study of warpage and shrinkage in injection molding of HDPE/rPET/wood composites with multiobjective optimization. Mater. Manuf. Process. 34(3) (2019) 274-282.
DOI: 10.1080/10426914.2018.1512123
Google Scholar
[46]
L. Benedetti, B. Brulé, N. Decreamer, K.E. Evans and O. Ghita, Shrinkage behaviour of semi-crystalline polymers in laser sintering: PEKK and PA12. Mater. Des. 181 (2019) 107906.
DOI: 10.1016/j.matdes.2019.107906
Google Scholar