Design and Fabrication of Injection Molds to Manufacture Double Channel Laryngoscope for Effective Airway Management: Taguchi Method for Surface Roughness Optimization

Article Preview

Abstract:

The present work focuses on the mold design and production of the multifunctional device laryngoscope with surface quality through the injection molding process. A laryngoscope is a device used by anesthesiologists to lift the tongue that facilitates to fix the air pipe in the larynx. Demand still exists in the laryngoscope part to assist anesthesiologists to take care of the airway without causing chest compression and ensure visualization of vocal cords. Therefore, the present work aims at developing a laryngoscope with a double channeled device, wherein one for aligning the camera and another for the air pipe. The paper outlines the design parameters required for manufacturing a single cavity mold to produce a laryngoscope viz. injection molding machine. The mold has multiple plates with complex fluid channels which ensures effective thermal management in-mold system. The mold is manufactured using high-strength tool steel materials and the product laryngoscope (ABS: Acrylonitrile butadiene styrene) is fabricated from the designed mold. Taguchi L9 experimental array was used to determine the optimal conditions (injection pressure, injection velocity, mold and melt temperature) for desired surface finish in the laryngoscope parts. The designed mold and optimized injection molding conditions resulted in a lower surface roughness value equal to 0.214 µm. Thereby, injection-molded laryngoscope parts can be used for large-scale productions for the benefit of medical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-140

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Vojnova, The benefits of a conforming cooling systems the molds in injection molding process, Procedia Eng. 149 (2016) 535 – 543.

DOI: 10.1016/j.proeng.2016.06.702

Google Scholar

[2] M. F. Bianchi, A.A. Gameros, D.A. Axinte, S. Lowth, A.M. Cendrowicz and S.T. Welch, Regional temperature control in ceramic injection molding: An approach based on cooling rate optimization, J. Manuf. Process. 68 (2021) 1767-1783.

DOI: 10.1016/j.jmapro.2021.06.069

Google Scholar

[3] M. Lakkanna, G.C.M. Kumar and R. Kadoli, Computation design of mould sprue for injection moulding thermoplastics, J. Comput. Des. Eng. 3 (2016) 37-52.

DOI: 10.1016/j.jcde.2015.06.006

Google Scholar

[4] D.M. Bryce, Plastic injection molding: manufacturing process fundamentals Dearborn, Michigan: Society of Manufacturing Engineers, 1996, p.253.

Google Scholar

[5] D.O. Kazmer. Injection Mold Design Engineering 2nd Edition, Hanser Publishers, Munich (2016).

Google Scholar

[6] R. Mihara, N. Komasawa, S. Matsunami and T. Minami, Comparison of direct and indirect laryngoscopes in vomitus and hematemesis settings: a randomized simulation trial, Biomed. Res. Int. (2015) https://doi.org/10.1155/2015/806243.

DOI: 10.1155/2015/806243

Google Scholar

[7] G. Llewelyn, A. Rees, C. Griffiths and Jacobi, M. A Design of Experiment Approach for Surface Roughness Comparisons of Foam Injection-Moulding Methods, Materials 13(10) (2020) 2358.

DOI: 10.3390/ma13102358

Google Scholar

[8] M. Mohan, M.N.M. Ansari and R.A. Shanks, Review on the effects of process parameters on strength, shrinkage, and warpage of injection molding plastic component, Polym. Plast. Technol. Eng. 56(1) (2017) 1-12.

DOI: 10.1080/03602559.2015.1132466

Google Scholar

[9] S. Kashyap and D. Datta, Process parameter optimization of plastic injection molding: a review, Int. J. Plast. Technol. 19(1) (2015) 1-18.

DOI: 10.1007/s12588-015-9115-2

Google Scholar

[10] C. Fernandes, A.J. Pontes, J.C. Viana and A. Gaspar‐Cunha, Modeling and Optimization of the Injection‐Molding Process: A Review, Adv. Polym. Technol. 37(2) (2018) 429-449.

DOI: 10.1002/adv.21683

Google Scholar

[11] H. Gao, Y. Zhang, X. Zhou and D. Li, Intelligent methods for the process parameter determination of plastic injection molding, Front. Mech. Eng. 13(1) (2018) 85-95.

DOI: 10.1007/s11465-018-0491-0

Google Scholar

[12] B.B. Kanbur, S. Suping and F. Duan, Design and optimization of conformal cooling channels for injection molding: a review, Int. J. Adv. Manuf. Technol. 106(7) (2020) 3253-3271.

DOI: 10.1007/s00170-019-04697-9

Google Scholar

[13] R. Davis and P. John, Application of Taguchi-based design of experiments for industrial chemical processes. In Edited Book. Valter Silva. Statistical approaches with emphasis on design of experiments applied to chemical processes, (2018) 137.

DOI: 10.5772/intechopen.69501

Google Scholar

[14] J. Antony and F.J. Antony, Teaching the Taguchi method to industrial engineers, Work Study, 50(4) (2001) 141 – 149.

DOI: 10.1108/00438020110391873

Google Scholar

[15] M. Tanco, E. Viles, L. Ilzarbe and M.J. Álvarez, Manufacturing industries need Design of Experiments (DoE). In World Congress on Engineering, 20 (2007) 1108-1113.

Google Scholar

[16] F. Hentati, I. Hadriche, N. Masmoudi and C. Bradai, Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation, Int. J. Adv. Manuf. Technol. 104(9) (2019) 4353-4363.

DOI: 10.1007/s00170-019-04283-z

Google Scholar

[17] C.Y. Chung, Integrated optimum layout of conformal cooling channels and optimal injection molding process parameters for optical lenses, Appl. Sci. 9(20) (2019) 4341.

DOI: 10.3390/app9204341

Google Scholar

[18] J. Heinisch, Y. Lockner and C. Hopmann, Comparison of design of experiment methods for modeling injection molding experiments using artificial neural networks. J. Manuf. Process, 61 (2021) 357-368.

DOI: 10.1016/j.jmapro.2020.11.011

Google Scholar

[19] K. Li, S. Yan, Y. Zhong, W. Pan and G. Zhao, Multi-objective optimization of the fiber-reinforced composite injection molding process using Taguchi method, RSM, and NSGA-II, Simul. Model. Pract. Theory. 91 (2019) 69-82.

DOI: 10.1016/j.simpat.2018.09.003

Google Scholar

[20] T. Kiatcharoenpol, and T. Vichiraprasert, Optimizing and Modeling for Plastic Injection Molding Process using Taguchi Method, In J. Phys. Conf. Ser. 1026(1) (2018) 012018.

DOI: 10.1088/1742-6596/1026/1/012018

Google Scholar

[21] S.Y. Martowibowo and R. Khloeun, Minimum Warpage Prediction in Plastic Injection Process using Taguchi Method and Simulation, Manuf. Technol. 19(3) (2019) 469-476.

DOI: 10.21062/ujep/314.2019/a/1213-2489/mt/19/3/469

Google Scholar

[22] H. Rangaswamy, I. Sogalad, S. Basavarajappa, S. Acharya and G.C. Manjunath Patel, Experimental analysis and prediction of strength of adhesive-bonded single-lap composite joints: Taguchi and artificial neural network approaches, SN Appl. Sci. 2 (2020) 1-15.

DOI: 10.1007/s42452-020-2851-8

Google Scholar

[23] M.J. Sandeep, P.G.C. Manjunath, G.R. Chate, M.B. Parappagoudar and U.M. Daivagna, Multi response optimization of green sand moulding parameters using Taguchi-DEAR method, In Appl. Mech. Mater. 895 (2019) 1-7.

DOI: 10.4028/www.scientific.net/amm.895.1

Google Scholar

[24] G.R. Chate, G.C.M. Patel, R.M. Kulkarni, P. Vernekar, A.S. Deshpande and M.B. Parappagoudar, Study of the effect of nano-silica particles on resin-bonded moulding sand properties and quality of casting, Silicon. 10(5) (2018) 1921-1936.

DOI: 10.1007/s12633-017-9705-z

Google Scholar

[25] G.R. Chate, G.C.M. Patel, H.M. Harsha, S.U. Urankar, S.A. Sanadi, A.P. Jadhav and A.S. Deshpande, Sustainable machining: Modelling and optimization using Taguchi, MOORA and DEAR methods, Mater. Today: Proc. 46(18) (2021) 8941-8947.

DOI: 10.1016/j.matpr.2021.05.365

Google Scholar

[26] G.C.M. Patel, R.S. Kumar, and N.S. Naidu, Optimization of abrasive water jet machining for green composites using multi-variant hybrid techniques. In Optimization of manufacturing processes, (2020) 129-162. Springer, Cham.

DOI: 10.1007/978-3-030-19638-7_6

Google Scholar

[27] M.P.G. Chandrashekarappa, S. Kumar, D.Y. Pimenov and K. Giasin, Experimental Analysis and Optimization of EDM Parameters on HcHcr Steel in Context with Different Electrodes and Dielectric Fluids Using Hybrid Taguchi-Based PCA-Utility and CRITIC-Utility Approaches. Metals. 11(3) (2021) 419.

DOI: 10.3390/met11030419

Google Scholar

[28] G.C.M. Patel, N.B. Pradeep, H.M. Harsha and A.K. Shettigar, Experimental analysis and optimization of plasma spray parameters on microhardness and wear loss of Mo-Ni-Cr coated super duplex stainless steel, Aust. J. Mech. Eng. (2020) 1-13. https://doi.org/10.1080/14484846.2020. 1808760.

DOI: 10.1080/14484846.2020.1808760

Google Scholar

[29] R. Sheshadri, M. Nagaraj, A. Lakshmikanthan, M.P.G. Chandrashekarappa, D.Y. Pimenov, K. Giasin and S. Wojciechowski, Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: Taguchi and Super Ranking Concept Approaches, J. Mater. Res. Technol. 14 (2021) 2586-2600.

DOI: 10.1016/j.jmrt.2021.07.144

Google Scholar

[30] Tiwary, Vivek Kumar, N. J. Ravi, P. Arunkumar, S. Shivakumar, Anand S. Deshpande, and Vinayak R. Malik, Investigations on friction stir joining of 3D printed parts to overcome bed size limitation and enhance joint quality for unmanned aircraft systems, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234.24 (2020): 4857-4871.

DOI: 10.1177/0954406220930049

Google Scholar

[31] Tiwary, Vivek Kumar, P. Arunkumar, and Vinayak R. Malik, An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer, Rapid Prototyping Journal (2021).

DOI: 10.1108/rpj-10-2020-0265

Google Scholar

[32] F. Guo, J. Liu, X. Zhou, H. Wang, Y. Zhang, D. Li and H. Zhou, An effective retrieval method for 3D models in plastic injection molding for process reuse, Appl. Soft Comput. 101 (2021) 107034.

DOI: 10.1016/j.asoc.2020.107034

Google Scholar

[33] S. Li, X.Y. Fan, Y.H. Guo, X. Liu, H.Y. Huang, Y.L. Cao and L.L. Li, Optimization of Injection Molding Process of Transparent Complex Multi-Cavity Parts Based on Kriging Model and Various Optimization Techniques, Arab. J. Sci. Eng. 46 (2021) 11835–11845.

DOI: 10.1007/s13369-021-05724-2

Google Scholar

[34] L. Alting and G. Boothroyd, Plastics and Plastic Processing. In Manufacturing Engineering Processes (2020) 343-362. CRC Press.

DOI: 10.1201/9781003067177-11

Google Scholar

[35] R.C. Vázquez Fletes, E.O. Cisneros López, F.J. Moscoso Sánchez, E. Mendizábal, R.G. Núñez, D. Rodrigue and P.O. Gudiño, Morphological and mechanical properties of bilayers wood-plastic composites and foams obtained by rotational molding, Polymers. 12(3) (2020) 503.

DOI: 10.3390/polym12030503

Google Scholar

[36] S. Dekker, W. Buesink, M. Blom, M. Alessio, N. Verplanck, M. Hihoud, and M. Odijk, Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens. Actuators B Chem. 272 (2018) 468-478.

DOI: 10.1016/j.snb.2018.04.005

Google Scholar

[37] D. Serban, G. Lamanna and C.G. Opran, Mixing, Conveying and Injection Molding Hybrid System for Conductive Polymer Composites. Procedia CIRP. 81 (2019) 677-682.

DOI: 10.1016/j.procir.2019.03.175

Google Scholar

[38] S.A. Uthale, N.A. Dhamal, D.K. Shinde and A.D. Kelkar, Polymeric hybrid nanocomposites processing and finite element modeling: An overview. Sci. Prog. 104(3) (2021) 00368504211029471.

DOI: 10.1177/00368504211029471

Google Scholar

[39] P. Liu, F. Zuo, H. Zhang, G. Wen and R. Su, Structural response of an injection molding part of the fuser mechanism in laser printer under thermo-mechanical coupling. Adv. Mech. Eng. 11(4) (2019) 1687814019846736.

DOI: 10.1177/1687814019846736

Google Scholar

[40] F. Marin, A.F. de Souza, C.H. Ahrens and L.N.L. de Lacalle, A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds. Int. J. Adv. Manuf. Technol. 113(5) (2021) 1561-1576.

DOI: 10.1007/s00170-021-06720-4

Google Scholar

[41] K. Dehnad, Quality control, robust design, and the Taguchi method. Springer Science & Business Media. (2012).

Google Scholar

[42] R.K. Roy, A primer on the Taguchi method. Dearborn, Michigan: Society of Manufacturing Egineers, (2010).

Google Scholar

[43] J. Jeevamalar, S.B. Kumar, P. Ramu, G. Suresh and K. Senthilnathan, Investigating the effects of copper cadmium electrode on Inconel 718 during EDM drilling. Mater. Today: Proc. 45 (2021) 1451-1455.

DOI: 10.1016/j.matpr.2020.07.416

Google Scholar

[44] G. Suresh, T. Srinivasan, A.J. Rajan, R. Aruna, R. Ravi, R. Vignesh and G.S. Krishnan, A study of delamination characteristics (drilling) on carbon fiber reinforced IPN composites during drilling using design experiments. In IOP Conf. Ser.: Mater. Sci. Eng. 988(1) (2020) 012008. IOP Publishing.

DOI: 10.1088/1757-899x/988/1/012008

Google Scholar

[45] R. Azad and H. Shahrajabian, Experimental study of warpage and shrinkage in injection molding of HDPE/rPET/wood composites with multiobjective optimization. Mater. Manuf. Process. 34(3) (2019) 274-282.

DOI: 10.1080/10426914.2018.1512123

Google Scholar

[46] L. Benedetti, B. Brulé, N. Decreamer, K.E. Evans and O. Ghita, Shrinkage behaviour of semi-crystalline polymers in laser sintering: PEKK and PA12. Mater. Des. 181 (2019) 107906.

DOI: 10.1016/j.matdes.2019.107906

Google Scholar