[1]
I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer Publishing Company, Incorporated, (2009).
DOI: 10.1007/978-1-4939-2113-3
Google Scholar
[2]
N. Asnafi, T. Shams, D. Aspenberg, and C. Öberg, 3D Metal Printing from an Industrial Perspective—Product Design, Production, and Business Models,, BHM Berg- und Hüttenmännische Monatshefte, vol. 164, no. 3,(2019) pp.91-100.
DOI: 10.1007/s00501-019-0827-z
Google Scholar
[3]
R. Hölker-Jäger and A. E. Tekkaya, 17 - Additive manufacture of tools and dies for metal forming,, in Laser Additive Manufacturing, M. Brandt, Ed. Woodhead Publishing, (2017), p.439–464.
DOI: 10.1016/b978-0-08-100433-3.00017-8
Google Scholar
[4]
P. Sonia, J. K. Jain, and K. K. Saxena, Influence of Severe Metal Forming Processes on Microstructure and Mechanical Properties of Mg alloys,, Adv. Mater. Process. Technol., (2020) p.1–24.
Google Scholar
[5]
T. Grover et al., Role of titanium in bio implants and additive manufacturing: An overview,, in Materials Today: Proceedings, (2019), vol. 26.
Google Scholar
[6]
S. B. M. Echrif and M. Hrairi, Research and Progress in Incremental Sheet Forming Processes,, Mater. Manuf. Process., vol. 26, no. 11, (2011) p.1404–1414.
DOI: 10.1080/10426914.2010.544817
Google Scholar
[7]
B. Singh, Influences of Powder mixed Dielectric Fluid on Machining Characteristics of EDM processed parts: A review,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1 (2021).
DOI: 10.1088/1757-899x/1116/1/012099
Google Scholar
[8]
I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies. Boston, MA: Springer, (2010).
Google Scholar
[9]
M. Mani, K. W. Lyons, and S. K. Gupta, Sustainability Characterization for Additive Manufacturing,, J. Res. Natl. Inst. Stand. Technol., vol. 119, (2014) p.419–428.
Google Scholar
[10]
B. Singh, P. Singhal, and K. K. Saxena, Investigation of thermal efficiency and depth of penetration during GTAW process,, (2019).
DOI: 10.1016/j.matpr.2019.07.166
Google Scholar
[11]
A. P. Singh, B. Singh, and K. K. Saxena, Precipitation behaviour of microalloyed steel during hot deformation,, (2019).
Google Scholar
[12]
A. N. Chaudhari, K. Dixit, G. S. Bhatia, B. Singh, P. Singhal, and K. K. Saxena, Welding behaviour of duplex stainless Steel AISI 2205: AReview,, (2019).
DOI: 10.1016/j.matpr.2019.07.136
Google Scholar
[13]
B. Singh, Influences and Optimization of Electrical Discharge Machining of AISI 2205,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1, (2021).
DOI: 10.1088/1757-899x/1116/1/012088
Google Scholar
[14]
O. Abdulhameed, A. Al-Ahmari, W. Ameen, and S. H. Mian, Additive manufacturing: Challenges, trends, and applications,, Adv. Mech. Eng., vol. 11, no. 2, (2019)pp.1-27.
DOI: 10.1177/1687814018822880
Google Scholar
[15]
W. Sarraji, J. Hussain, and W.-X. Ren, Experimental Investigations on Forming Time in Negative Incremental Sheet Metal Forming Process,, Mater. Manuf. Process., vol. 27, no. 5, (2012) p.499–506.
DOI: 10.1080/10426914.2011.585550
Google Scholar
[16]
G. Hussain, L. Gao, and N. Hayat, Forming Parameters and Forming Defects in Incremental Forming of an Aluminum Sheet: Correlation, Empirical Modeling, and Optimization: Part A,, Mater. Manuf. Process., vol. 26, no. 12, (2011) p.1546–1553,.
DOI: 10.1080/10426914.2011.552017
Google Scholar
[17]
W. Shaheen, S. Kanapathipillai, P. Mathew, and B. G. Prusty, Optimization of compound die piercing punches and double cutting process parameters using finite element analysis,, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 234, no. 1–2, (2020)p.3–13.
DOI: 10.1177/0954405419855507
Google Scholar
[18]
Y. Park and J. S. Colton, Sheet Metal Forming Using Polymer Composite Rapid Prototype Tooling,, J. Eng. Mater. Technol., vol. 125, no. 3, (2003) p.247–255.
DOI: 10.1115/1.1543971
Google Scholar
[19]
T. Uygunoglu, I. Gunes, and W. Brostow, Physical and Mechanical Properties of Polymer Composites with High Content of Wastes Including Boron,, Mater. Res., vol. 18, (2015). p.1188–1196.
DOI: 10.1590/1516-1439.009815
Google Scholar
[20]
J. Sim, Y. Kang, B.J. Kim, Y.H. Park, and Y.C. Lee, Preparation of Fly Ash/Epoxy Composites and its Effects on Mechanical Properties,, Polymers (Basel)., vol. 12, no.1, (2020) p.79.
DOI: 10.3390/polym12010079
Google Scholar
[21]
J. Fu, L. Shi, D. Zhang, Q. Zhong, and Y. Chen, Effect of nanoparticles on the performance of thermally conductive epoxy adhesives,, Polym. Eng. Sci., vol. 50, no. 9, (2010)p.1809–1819.
DOI: 10.1002/pen.21705
Google Scholar
[22]
B. L. Zhu, J. Ma, J. Wu, K. C. Yung, and C. S. Xie, Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles,, J. Appl. Polym. Sci., vol. 118, no. 5, (2010) p.2754–2764.
DOI: 10.1002/app.32673
Google Scholar
[23]
S.-S. Choi, I.-S. Kim, S. G. Lee, and C. W. Joo, Filler-polymer interactions of styrene and butadiene units in silica-filled styrene–butadiene rubber compounds,, J. Polym. Sci. Part B Polym. Phys., vol. 42, no. 4, (2004) p.577–584.
DOI: 10.1002/polb.10689
Google Scholar
[24]
P. C. Gope and V. K. Singh, Effect of filler addition and strain rate on the compressive strength of silica styrene-butadiene rubber-filled epoxy composites,, Polym. Eng. Sci., vol. 51, no. 6, 2011.p.1130–1136.
DOI: 10.1002/pen.21815
Google Scholar
[25]
C.-C. Kuo and M.-R. Li, Development of sheet metal forming dies with excellent mechanical properties using additive manufacturing and rapid tooling technologies,, Int. J. Adv. Manuf. Technol., vol. 90, no. 1, (2017), p.21–25.
DOI: 10.1007/s00170-016-9371-0
Google Scholar
[26]
S. Kumar and J. P. Kruth, Composites by rapid prototyping technology,, Mater. Des., vol. 31, no. 2, (2010) p.850–856.
Google Scholar
[27]
Z. H. Du, C. K. Chua, Y. S. Chua, K. G. Loh-Lee, and S. T. Lim, Rapid Sheet Metal Manufacturing. Part 1: Indirect Rapid Tooling,, Int. J. Adv. Manuf. Technol., vol. 19, no. 6, (2002) p.411–417.
DOI: 10.1007/s001700200042
Google Scholar
[28]
J. Colton, Sheet Metal Forming Using Polymer Composite Rapid Prototype Tooling,, J. Eng. Mater. Technol. Asme - J ENG MATER TECHNOL, vol. 125. (2003).
DOI: 10.1115/1.1543971
Google Scholar
[29]
C.-C. Kuo and M.-R. Li, A cost-effective method for rapid manufacturing sheet metal forming dies,, Int. J. Adv. Manuf. Technol., vol. 85, no. 9, (2016) p.2651–2656.
DOI: 10.1007/s00170-015-8139-2
Google Scholar
[30]
C. C. Kuo and Y. C. Tsou, A flexible and efficient system for removing support materials from rapid prototypes,, Materwiss. Werksttech., vol. 47, no. 7, (2016),p.635–645.
DOI: 10.1002/mawe.201600333
Google Scholar
[31]
F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting,, J. Mater. Process. Technol., vol. 111, no. 1, (2001) p.210–213.
DOI: 10.1016/s0924-0136(01)00522-2
Google Scholar
[32]
V. Fallah, S. F. Corbin, and A. Khajepour, Process optimization of Ti–Nb alloy coatings on a Ti–6Al–4V plate using a fiber laser and blended elemental powders,, J. Mater. Process. Technol., vol. 210, no. 14(2010), p.2081–(2087).
DOI: 10.1016/j.jmatprotec.2010.07.030
Google Scholar
[33]
W. Meiners, K. Wissenbach, and R. Poprawe, Direct generation of metal parts and tools by selective laser powder remelting (SLPR),, Int. Congr. Appl. Lasers Electro-Optics, vol. 1998, no. 1, (1998) pp. E31–E37.
DOI: 10.2351/1.5059149
Google Scholar
[34]
C. M. Cheah, C. K. Chua, C. W. Lee, S. T. Lim, K. H. Eu, and L. T. Lin, Rapid Sheet Metal Manufacturing. Part 2: Direct Rapid Tooling,, Int. J. Adv. Manuf. Technol., vol. 19, no. 7, (2002) p.510–515.
DOI: 10.1007/s001700200054
Google Scholar
[35]
S. H. Masood, 10.04 - Advances in Fused Deposition Modeling,, in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne, and B. Yilbas, Eds. Oxford: Elsevier, (2014), p.69–91.
DOI: 10.1016/b978-0-08-096532-1.01002-5
Google Scholar
[36]
I. Durgun and U. Çalışkan, Silicon moulding production technology applications in automotive product development process. (2011).
Google Scholar
[37]
M. Li, W. Du, A. Elwany, Z. Pei, and C. Ma, Metal Binder Jetting Additive Manufacturing: A Literature Review,, J. Manuf. Sci. Eng., vol. 142, no. 9, (2020).
DOI: 10.1115/1.4047430
Google Scholar
[38]
M. Layani, X. Wang, and S. Magdassi, Novel Materials for 3D Printing by Photopolymerization,, Adv. Mater., vol. 30, no. 41, (2018) p.1706344.
DOI: 10.1002/adma.201706344
Google Scholar