Role of Additive Manufacturing in Development of Forming Tools and Dies for Sheet Metal Forming: A Review

Article Preview

Abstract:

Price and time are two major concerns in the industry which encourages the development and manufacturing of new dies for sheet metal forming applications. Additive manufacturing (AM) and rapid tooling (RT) are now emerging techniques for producing cost-effective and fast production of sheet metal forming dies with excellent mechanical and wear resistance properties. The paper gives an insight into AM processes that were implemented in the tooling industry to enhance moulding efficiency and sheet metal forming processes. The advantages and challenges observed in using AM are highlighted and discussed as opposed to traditional tooling. The RT processes used in moulding and sheet metal formation are addressed, and their limitations are highlighted. The paper also discusses several possible application areas in which AM technologies can be used further to enhance the efficiency of the devices. Finally, discussion on current issues related to the use of AM in tooling has been presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-128

Citation:

Online since:

June 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer Publishing Company, Incorporated, (2009).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[2] N. Asnafi, T. Shams, D. Aspenberg, and C. Öberg, 3D Metal Printing from an Industrial Perspective—Product Design, Production, and Business Models,, BHM Berg- und Hüttenmännische Monatshefte, vol. 164, no. 3,(2019) pp.91-100.

DOI: 10.1007/s00501-019-0827-z

Google Scholar

[3] R. Hölker-Jäger and A. E. Tekkaya, 17 - Additive manufacture of tools and dies for metal forming,, in Laser Additive Manufacturing, M. Brandt, Ed. Woodhead Publishing, (2017), p.439–464.

DOI: 10.1016/b978-0-08-100433-3.00017-8

Google Scholar

[4] P. Sonia, J. K. Jain, and K. K. Saxena, Influence of Severe Metal Forming Processes on Microstructure and Mechanical Properties of Mg alloys,, Adv. Mater. Process. Technol., (2020) p.1–24.

Google Scholar

[5] T. Grover et al., Role of titanium in bio implants and additive manufacturing: An overview,, in Materials Today: Proceedings, (2019), vol. 26.

Google Scholar

[6] S. B. M. Echrif and M. Hrairi, Research and Progress in Incremental Sheet Forming Processes,, Mater. Manuf. Process., vol. 26, no. 11, (2011) p.1404–1414.

DOI: 10.1080/10426914.2010.544817

Google Scholar

[7] B. Singh, Influences of Powder mixed Dielectric Fluid on Machining Characteristics of EDM processed parts: A review,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1 (2021).

DOI: 10.1088/1757-899x/1116/1/012099

Google Scholar

[8] I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies. Boston, MA: Springer, (2010).

Google Scholar

[9] M. Mani, K. W. Lyons, and S. K. Gupta, Sustainability Characterization for Additive Manufacturing,, J. Res. Natl. Inst. Stand. Technol., vol. 119, (2014) p.419–428.

Google Scholar

[10] B. Singh, P. Singhal, and K. K. Saxena, Investigation of thermal efficiency and depth of penetration during GTAW process,, (2019).

DOI: 10.1016/j.matpr.2019.07.166

Google Scholar

[11] A. P. Singh, B. Singh, and K. K. Saxena, Precipitation behaviour of microalloyed steel during hot deformation,, (2019).

Google Scholar

[12] A. N. Chaudhari, K. Dixit, G. S. Bhatia, B. Singh, P. Singhal, and K. K. Saxena, Welding behaviour of duplex stainless Steel AISI 2205: AReview,, (2019).

DOI: 10.1016/j.matpr.2019.07.136

Google Scholar

[13] B. Singh, Influences and Optimization of Electrical Discharge Machining of AISI 2205,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1, (2021).

DOI: 10.1088/1757-899x/1116/1/012088

Google Scholar

[14] O. Abdulhameed, A. Al-Ahmari, W. Ameen, and S. H. Mian, Additive manufacturing: Challenges, trends, and applications,, Adv. Mech. Eng., vol. 11, no. 2, (2019)pp.1-27.

DOI: 10.1177/1687814018822880

Google Scholar

[15] W. Sarraji, J. Hussain, and W.-X. Ren, Experimental Investigations on Forming Time in Negative Incremental Sheet Metal Forming Process,, Mater. Manuf. Process., vol. 27, no. 5, (2012) p.499–506.

DOI: 10.1080/10426914.2011.585550

Google Scholar

[16] G. Hussain, L. Gao, and N. Hayat, Forming Parameters and Forming Defects in Incremental Forming of an Aluminum Sheet: Correlation, Empirical Modeling, and Optimization: Part A,, Mater. Manuf. Process., vol. 26, no. 12, (2011) p.1546–1553,.

DOI: 10.1080/10426914.2011.552017

Google Scholar

[17] W. Shaheen, S. Kanapathipillai, P. Mathew, and B. G. Prusty, Optimization of compound die piercing punches and double cutting process parameters using finite element analysis,, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 234, no. 1–2, (2020)p.3–13.

DOI: 10.1177/0954405419855507

Google Scholar

[18] Y. Park and J. S. Colton, Sheet Metal Forming Using Polymer Composite Rapid Prototype Tooling,, J. Eng. Mater. Technol., vol. 125, no. 3, (2003) p.247–255.

DOI: 10.1115/1.1543971

Google Scholar

[19] T. Uygunoglu, I. Gunes, and W. Brostow, Physical and Mechanical Properties of Polymer Composites with High Content of Wastes Including Boron,, Mater. Res., vol. 18, (2015). p.1188–1196.

DOI: 10.1590/1516-1439.009815

Google Scholar

[20] J. Sim, Y. Kang, B.J. Kim, Y.H. Park, and Y.C. Lee, Preparation of Fly Ash/Epoxy Composites and its Effects on Mechanical Properties,, Polymers (Basel)., vol. 12, no.1, (2020) p.79.

DOI: 10.3390/polym12010079

Google Scholar

[21] J. Fu, L. Shi, D. Zhang, Q. Zhong, and Y. Chen, Effect of nanoparticles on the performance of thermally conductive epoxy adhesives,, Polym. Eng. Sci., vol. 50, no. 9, (2010)p.1809–1819.

DOI: 10.1002/pen.21705

Google Scholar

[22] B. L. Zhu, J. Ma, J. Wu, K. C. Yung, and C. S. Xie, Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles,, J. Appl. Polym. Sci., vol. 118, no. 5, (2010) p.2754–2764.

DOI: 10.1002/app.32673

Google Scholar

[23] S.-S. Choi, I.-S. Kim, S. G. Lee, and C. W. Joo, Filler-polymer interactions of styrene and butadiene units in silica-filled styrene–butadiene rubber compounds,, J. Polym. Sci. Part B Polym. Phys., vol. 42, no. 4, (2004) p.577–584.

DOI: 10.1002/polb.10689

Google Scholar

[24] P. C. Gope and V. K. Singh, Effect of filler addition and strain rate on the compressive strength of silica styrene-butadiene rubber-filled epoxy composites,, Polym. Eng. Sci., vol. 51, no. 6, 2011.p.1130–1136.

DOI: 10.1002/pen.21815

Google Scholar

[25] C.-C. Kuo and M.-R. Li, Development of sheet metal forming dies with excellent mechanical properties using additive manufacturing and rapid tooling technologies,, Int. J. Adv. Manuf. Technol., vol. 90, no. 1, (2017), p.21–25.

DOI: 10.1007/s00170-016-9371-0

Google Scholar

[26] S. Kumar and J. P. Kruth, Composites by rapid prototyping technology,, Mater. Des., vol. 31, no. 2, (2010) p.850–856.

Google Scholar

[27] Z. H. Du, C. K. Chua, Y. S. Chua, K. G. Loh-Lee, and S. T. Lim, Rapid Sheet Metal Manufacturing. Part 1: Indirect Rapid Tooling,, Int. J. Adv. Manuf. Technol., vol. 19, no. 6, (2002) p.411–417.

DOI: 10.1007/s001700200042

Google Scholar

[28] J. Colton, Sheet Metal Forming Using Polymer Composite Rapid Prototype Tooling,, J. Eng. Mater. Technol. Asme - J ENG MATER TECHNOL, vol. 125. (2003).

DOI: 10.1115/1.1543971

Google Scholar

[29] C.-C. Kuo and M.-R. Li, A cost-effective method for rapid manufacturing sheet metal forming dies,, Int. J. Adv. Manuf. Technol., vol. 85, no. 9, (2016) p.2651–2656.

DOI: 10.1007/s00170-015-8139-2

Google Scholar

[30] C. C. Kuo and Y. C. Tsou, A flexible and efficient system for removing support materials from rapid prototypes,, Materwiss. Werksttech., vol. 47, no. 7, (2016),p.635–645.

DOI: 10.1002/mawe.201600333

Google Scholar

[31] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting,, J. Mater. Process. Technol., vol. 111, no. 1, (2001) p.210–213.

DOI: 10.1016/s0924-0136(01)00522-2

Google Scholar

[32] V. Fallah, S. F. Corbin, and A. Khajepour, Process optimization of Ti–Nb alloy coatings on a Ti–6Al–4V plate using a fiber laser and blended elemental powders,, J. Mater. Process. Technol., vol. 210, no. 14(2010), p.2081–(2087).

DOI: 10.1016/j.jmatprotec.2010.07.030

Google Scholar

[33] W. Meiners, K. Wissenbach, and R. Poprawe, Direct generation of metal parts and tools by selective laser powder remelting (SLPR),, Int. Congr. Appl. Lasers Electro-Optics, vol. 1998, no. 1, (1998) pp. E31–E37.

DOI: 10.2351/1.5059149

Google Scholar

[34] C. M. Cheah, C. K. Chua, C. W. Lee, S. T. Lim, K. H. Eu, and L. T. Lin, Rapid Sheet Metal Manufacturing. Part 2: Direct Rapid Tooling,, Int. J. Adv. Manuf. Technol., vol. 19, no. 7, (2002) p.510–515.

DOI: 10.1007/s001700200054

Google Scholar

[35] S. H. Masood, 10.04 - Advances in Fused Deposition Modeling,, in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne, and B. Yilbas, Eds. Oxford: Elsevier, (2014), p.69–91.

DOI: 10.1016/b978-0-08-096532-1.01002-5

Google Scholar

[36] I. Durgun and U. Çalışkan, Silicon moulding production technology applications in automotive product development process. (2011).

Google Scholar

[37] M. Li, W. Du, A. Elwany, Z. Pei, and C. Ma, Metal Binder Jetting Additive Manufacturing: A Literature Review,, J. Manuf. Sci. Eng., vol. 142, no. 9, (2020).

DOI: 10.1115/1.4047430

Google Scholar

[38] M. Layani, X. Wang, and S. Magdassi, Novel Materials for 3D Printing by Photopolymerization,, Adv. Mater., vol. 30, no. 41, (2018) p.1706344.

DOI: 10.1002/adma.201706344

Google Scholar