Analysis of the Multi-Directional Forging of Aluminium Alloy 7075 Process Parameters: Numerical and Experimental Analysis

Article Preview

Abstract:

In this study, a multi-directional forging process was conducted on AA 7075. Analysis of the evolution of the mechanical properties (tensile and hardness) and the microstructure was done. The effects of the process parameters (temperatures, die speed, and strain per pass) on the process outputs were investigated. The hardness of the MDF processed samples was determined using Brinell hardness tester, the tensile tests were conducted on a universal tensile machine (GT-7001-LS50), while the grains were observed using the Zeiss Axio Zoom V16 microscope and Tescan VEGA3 scanning electron microscope. It was observed that the MDF process leads to grain refinement with increase temperature and strain per pass. However, large strains per pass caused damages to the samples. The hardness and the tensile strength were seen to generally improve with an increase in strain per pass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-72

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Alemdag, S. Karabiyik, A. V. Mikhaylovskaya, M. S. Kishchik, and G. Purcek, Effect of multi-directional hot forging process on the microstructure and mechanical properties of Al–Si based alloy containing high amount of Zn and Cu, Materials Science and Engineering: A. 803 (2021) 140709.

DOI: 10.1016/j.msea.2020.140709

Google Scholar

[2] L. F. Pan, L. Chen, and W. L. Yan, High Strength and Ductility in Multi-Directional Forged Wrought Aluminum Alloys, AMR (2014) 1064.

DOI: 10.4028/www.scientific.net/amr.1064.26

Google Scholar

[3] Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Materials Research Letters. 4 (2016) 1–21.

DOI: 10.1080/21663831.2015.1060543

Google Scholar

[4] Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science. 45 (2000) 103–189, (2000).

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[5] E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications, Int J Adv Manuf Technol. 100 (2019) 5-8.

DOI: 10.1007/s00170-018-2652-z

Google Scholar

[6] M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Processing of metals by equal-channel angular pressing, J Mater Sci. 6 (2001) 2835–2843.

Google Scholar

[7] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Materialia. 47 (1999) 579–583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[8] Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful properties of twist extrusion, Materials Science and Engineering: A. 503 (2009) 14–17.

DOI: 10.1016/j.msea.2007.12.055

Google Scholar

[9] M. S. Mohebbi and A. Akbarzadeh, Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes, Materials Science and Engineering: A. 528 (2010) 180–188.

DOI: 10.1016/j.msea.2010.08.081

Google Scholar

[10] A. Dziubińska, A. Gontarz, K. Horzelska, and P. Pieśko, The Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Technology, Procedia Manufacturing. 2 (2015) 337–341.

DOI: 10.1016/j.promfg.2015.07.059

Google Scholar

[11] Y. Nakao and H. Miura, Nano-grain evolution in austenitic stainless steel during multi-directional forging, Materials Science and Engineering: A. 528 (2011) 1310–1317.

DOI: 10.1016/j.msea.2010.10.018

Google Scholar

[12] O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr, Journal of Alloys and Compounds. 746 (2018) 520–531.

DOI: 10.1016/j.jallcom.2018.02.277

Google Scholar

[13] J. Li, J. Liu, and Z. Cui, Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate, Materials Science and Engineering: A. 643 (2015) 32–36.

DOI: 10.1016/j.msea.2015.07.028

Google Scholar

[14] C. Yan, J. Shen, and P. Lin, Numerical Investigation on the Strain Evolution of Ti-6Al-4V Alloy during Multi-directional Forging at Elevated Temperatures, High Temperature Materials and Processes. 37 (2018) 571–580.

DOI: 10.1515/htmp-2016-0223

Google Scholar

[15] Obiko, F. M. Mwema, and H. Shangwira, Forging optimisation process using numerical simulation and Taguchi method, SN Appl. Sci. 2 (2020) C3-XXXVII-C3-XL.

DOI: 10.1007/s42452-020-2547-0

Google Scholar

[16] E. Bagherpour, F. Qods, and R. Ebrahimi, Effect of geometric parameters on deformation behavior of simple shear extrusion, IOP Conf. Ser.: Mater. Sci. Eng. 63 (2014) 12046.

DOI: 10.1088/1757-899x/63/1/012046

Google Scholar

[17] H. Miura, W. Nakamura, and M. Kobayashi, Room-temperature Multi-directional Forging of AZ80Mg Alloy to Induce Ultrafine Grained Structure and Specific Mechanical Properties, Procedia Engineering. 81 (2014) 534–539.

DOI: 10.1016/j.proeng.2014.10.035

Google Scholar

[18] J. Xing, X. Y. Yang, H. Miura, and T. Sakai, Grain Refinement in Magnesium Alloy AZ31 during Multidirectional Forging under Decreasing Temperature Conditions, MSF. 488-489 (2005) 597–600.

DOI: 10.4028/www.scientific.net/msf.488-489.597

Google Scholar

[19] Zhu, C.Y. Ban, J.Z. Cui, L. Li, Z.H. Zhao, and Y.B. Zuo, Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature, Transactions of Nonferrous Metals Society of China. 24 (2014) 1301–1306.

DOI: 10.1016/s1003-6326(14)63192-7

Google Scholar

[20] P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metall and Mat Trans A. 30 (1999) 1989–(1997).

DOI: 10.1007/s11661-999-0009-9

Google Scholar

[21] C. S. Jain and A. N. Bramley, Speed and Frictional Effects in Hot Forging, Proceedings of the Institution of Mechanical Engineers. 182 (1967) 783–798, (1967).

DOI: 10.1243/pime_proc_1967_182_059_02

Google Scholar

[22] P. W. Wallace and J.A. Schey, Speed Effects In Hot Closed Die Forging, (1971).

Google Scholar

[23] P. C. Sharath, K. R. Udupa, and G. V. P. Kumar, Effect of Multi Directional Forging on the Microstructure and Mechanical Properties of Zn-24 wt% Al-2 wt% Cu Alloy, Trans Indian Inst Met. 70 (2017) 89–96.

DOI: 10.1007/s12666-016-0863-2

Google Scholar

[24] X. Zhou, J. Zhang, X. Chen, X. Zhang, and M. Li, Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment, Journal of Alloys and Compounds. 787 (2019) 551–559.

DOI: 10.1016/j.jallcom.2019.02.133

Google Scholar

[25] M. Hong, D. Wu, R. S. Chen, and X. H. Du, Ductility enhancement of EW75 alloy by multi-directional forging, Journal of Magnesium and Alloys. 2 (2014) 317–324.

DOI: 10.1016/j.jma.2014.11.005

Google Scholar

[26] C. Obara, F. M. Mwema, J. N. Keraita, H. Shagwira, and J. O. Obiko, A multi-response optimization of the multi-directional forging process for aluminium 7075 alloy using grey-based taguchi method, SN Appl. Sci. 3 (2021) 32.

DOI: 10.1007/s42452-021-04527-2

Google Scholar

[27] P. Vimalanathan, G. Suresh, M. Rajesh, R. Manikandan, S. K. Rajesh Kanna, and V. Santhanam, A Study on Mechanical and Morphological Analysis of Banana/Sisal Fiber Reinforced IPN Composites, Fibers Polym. 22 (2021) 2261–2268.

DOI: 10.1007/s12221-021-0917-x

Google Scholar

[28] N.G.S. Almeida, P.H.R. Pereira, C. D. Faria, M.T.P. Aguilar, and P. R. Cetlin, Mechanical behavior and microstructures of aluminum processed by low strain amplitude multi-directional confined forging, Journal of Materials Research and Technology. 9 (2020) 3190–3197.

DOI: 10.1016/j.jmrt.2020.01.065

Google Scholar

[29] R. Lu et al., Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach, Journal of Materials Science & Technology. 80 (2021) 50–162.

DOI: 10.1016/j.jmst.2020.11.055

Google Scholar

[30] S. Volkov and Volkova, Deformation Diagrams of Metals with Different Types of Microstructure Damage, AIP Conference Proceedings 1785 (2016) 040091.

DOI: 10.1063/1.4967148

Google Scholar

[31] C. Kobayashi, T. Sakai, A. Belyakov, and H. Miura, Ultrafine grain development in copper during multidirectional forging at 195 K, Philosophical Magazine Letters. 87 (2007) 751–766.

DOI: 10.1080/09500830701566016

Google Scholar

[32] D. Liu and D. Pons, Crack Propagation Mechanisms for Creep Fatigue: A Consolidated Explanation of Fundamental Behaviours from Initiation to Failure, Metals. 8 (2018) 623.

DOI: 10.3390/met8080623

Google Scholar

[33] W. J. Bratina and S. Yue, Fatigue Crack Growth — A Metallurgist's Point of View, in: A. S. Krausz (Eds.), Time-Dependent Fracture, Springer., Netherlands, 1985, p.27–42.

DOI: 10.1007/978-94-009-5085-6_3

Google Scholar

[34] M. Bacca, D. R. Hayhurst, and R. M. McMeeking, Continuous dynamic recrystallization during severe plastic deformation, Mechanics of Materials. 90 (2015) 148–156.

DOI: 10.1016/j.mechmat.2015.05.008

Google Scholar

[35] Y. C. Lin, M.-S. Chen, and J. Zhong, Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel, Materials & Design. 30 (2009) 908–913.

DOI: 10.1016/j.matdes.2008.05.010

Google Scholar

[36] X. Wang, H. S. Zurob, J. D. Embury, X. Ren, and I. Yakubtsov, Microstructural features controlling the deformation and recrystallization behaviour Fe–30%Mn and Fe–30%Mn–0.5%C, Materials Science and Engineering: A. 527 (2010) 16-17.

DOI: 10.1016/j.msea.2010.03.014

Google Scholar

[37] Y. Zeng, Y. Chao, Z. Luo, Y. Cai, and R. Song, Effect of Multidirectional Forging and Heat Treatment on Mechanical Properties of In Situ ZrB2p/6061Al Composites, High Temperature Materials and Processes. 37 (2018) 603–612.

DOI: 10.1515/htmp-2016-0200

Google Scholar

[38] Z. Zhixin, H. Weiping, and M. Qingchun, Effects of friction coefficient and shape of impact object on the fatigue life of specimens with impact damage, J. Phys.: Conf. Ser. 843 (2017) 12024.

DOI: 10.1088/1742-6596/843/1/012024

Google Scholar

[39] M. A. Salevati, F. Akbaripanah, R. Mahmudi, K. H. Fekete, A. Heczel, and J. Gubicza, Comparison of the effects of isothermal equal channel angular pressing and multi-directional forging on mechanical properties of AM60 magnesium alloy, Materials Science and Engineering: A. 776 (2020) 139002.

DOI: 10.1016/j.msea.2020.139002

Google Scholar

[40] J. Zhao, Y. Deng, J. Zhang, Z. Ma, and Y. Zhang, Effect of temperature and strain rate on the grain structure during the multi-directional forging of the Al Zn Mg Cu alloy, Materials Science and Engineering: A. 756 (2019) 119–128.

DOI: 10.1016/j.msea.2019.04.033

Google Scholar

[41] V. V. Struzhanov, S. S. Volkov, and T. A. Volkova, Devolopment of microstructure damage in structurally heterogeneous materials under deformation, DREAM. 3 (2016) 21–30.

Google Scholar

[42] Zhang, Z. Li, X. Sheng, Y. Gao, and Q. Lei, Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging, Fusion Engineering and Design. 159 (2020) 111766.

DOI: 10.1016/j.fusengdes.2020.111766

Google Scholar

[43] E. V. Avtokratova et al., Structure and annealing behavior of an Al-Mg-TM alloy processed by equal channel angular pressing, LOM. 4 (2014) 93–95.

DOI: 10.22226/2410-3535-2014-2-93-95

Google Scholar

[44] G. A. Salishchev, O. R. Valiakhmetov, and R. M. Galeyev, Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, J Mater Sci. 28 (1993) 2898–2902.

DOI: 10.1007/bf00354692

Google Scholar

[45] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science. 60 (2014) 130–207.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[46] Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia. 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[47] E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol Lett. 65 (2017) 581.

DOI: 10.1007/s11249-016-0805-5

Google Scholar

[48] A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling, Acta Materialia. 50 (2002) 4461–4476.

DOI: 10.1016/s1359-6454(02)00253-7

Google Scholar

[49] T. Mineta, K. Hasegawa, and H. Sato, High strength and plastic deformability of Mg–Li–Al alloy with dual BCC phase produced by a combination of heat treatment and multi-directional forging in channel die, Materials Science and Engineering: A. 773 (2020) 138867.

DOI: 10.1016/j.msea.2019.138867

Google Scholar

[50] H. Miura, X. Yang, and T. Sakai, Evolution of Ultra-Fine Grains in AZ31 and AZ61 Mg Alloys during Multi Directional Forging and Their Properties, Mater. Trans., 49 (2008) 1015–1020.

DOI: 10.2320/matertrans.mc200737

Google Scholar

[51] M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. O. Mosleh, W. S. AbuShanab, and V. K. Portnoy, Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al⁻Mg⁻Mn Alloy, Materials (Basel, Switzerland). 11 (2018).

DOI: 10.3390/ma11112166

Google Scholar

[52] A. Grajcar, A. Kozłowska, S. Topolska, and M. Morawiec, Effect of Deformation Temperature on Microstructure Evolution and Mechanical Properties of Low-Carbon High-Mn Steel, Advances in Materials Science and Engineering. 2018 (2018) 1–7.

DOI: 10.1155/2018/7369827

Google Scholar

[53] M. Eskandari, A. Zarei-Hanzaki, J. A. Szpunar, M. A. Mohtadi-Bonab, A. R. Kamali, and M. Nazarian-Samani, Microstructure evolution and mechanical behavior of a new microalloyed high Mn austenitic steel during compressive deformation, Materials Science and Engineering: A. 615 (2014) 424–435.

DOI: 10.1016/j.msea.2014.07.084

Google Scholar

[54] X. Chen et al., Effect of Temperature on the Mechanical Properties and Deformation Mechanism of a High Mn Steel With Composite Structure, Front. Mater. 7 (2020) 143.

Google Scholar

[55] H. Miura and M. Ito, Improvement in Mechanical Properties of Coarse-Grained AZ61 Mg Alloy by Multidirectional Forging and Ultrafine Grain Refinement, MSF. 706-709 (2012) 1227–1232.

DOI: 10.4028/www.scientific.net/msf.706-709.1227

Google Scholar

[56] M. Noda, M. Hirohashi, and K. Funami, Low Temperature Superplasticity and Its Deformation Mechanism in Grain Refinement of Al-Mg Alloy by Multi-Axial Alternative Forging, Mater. Trans. 44 (2003) 2288–2297.

DOI: 10.2320/matertrans.44.2288

Google Scholar