[1]
Y. Alemdag, S. Karabiyik, A. V. Mikhaylovskaya, M. S. Kishchik, and G. Purcek, Effect of multi-directional hot forging process on the microstructure and mechanical properties of Al–Si based alloy containing high amount of Zn and Cu, Materials Science and Engineering: A. 803 (2021) 140709.
DOI: 10.1016/j.msea.2020.140709
Google Scholar
[2]
L. F. Pan, L. Chen, and W. L. Yan, High Strength and Ductility in Multi-Directional Forged Wrought Aluminum Alloys, AMR (2014) 1064.
DOI: 10.4028/www.scientific.net/amr.1064.26
Google Scholar
[3]
Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Materials Research Letters. 4 (2016) 1–21.
DOI: 10.1080/21663831.2015.1060543
Google Scholar
[4]
Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science. 45 (2000) 103–189, (2000).
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[5]
E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications, Int J Adv Manuf Technol. 100 (2019) 5-8.
DOI: 10.1007/s00170-018-2652-z
Google Scholar
[6]
M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Processing of metals by equal-channel angular pressing, J Mater Sci. 6 (2001) 2835–2843.
Google Scholar
[7]
Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Materialia. 47 (1999) 579–583.
DOI: 10.1016/s1359-6454(98)00365-6
Google Scholar
[8]
Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful properties of twist extrusion, Materials Science and Engineering: A. 503 (2009) 14–17.
DOI: 10.1016/j.msea.2007.12.055
Google Scholar
[9]
M. S. Mohebbi and A. Akbarzadeh, Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes, Materials Science and Engineering: A. 528 (2010) 180–188.
DOI: 10.1016/j.msea.2010.08.081
Google Scholar
[10]
A. Dziubińska, A. Gontarz, K. Horzelska, and P. Pieśko, The Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Technology, Procedia Manufacturing. 2 (2015) 337–341.
DOI: 10.1016/j.promfg.2015.07.059
Google Scholar
[11]
Y. Nakao and H. Miura, Nano-grain evolution in austenitic stainless steel during multi-directional forging, Materials Science and Engineering: A. 528 (2011) 1310–1317.
DOI: 10.1016/j.msea.2010.10.018
Google Scholar
[12]
O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr, Journal of Alloys and Compounds. 746 (2018) 520–531.
DOI: 10.1016/j.jallcom.2018.02.277
Google Scholar
[13]
J. Li, J. Liu, and Z. Cui, Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate, Materials Science and Engineering: A. 643 (2015) 32–36.
DOI: 10.1016/j.msea.2015.07.028
Google Scholar
[14]
C. Yan, J. Shen, and P. Lin, Numerical Investigation on the Strain Evolution of Ti-6Al-4V Alloy during Multi-directional Forging at Elevated Temperatures, High Temperature Materials and Processes. 37 (2018) 571–580.
DOI: 10.1515/htmp-2016-0223
Google Scholar
[15]
Obiko, F. M. Mwema, and H. Shangwira, Forging optimisation process using numerical simulation and Taguchi method, SN Appl. Sci. 2 (2020) C3-XXXVII-C3-XL.
DOI: 10.1007/s42452-020-2547-0
Google Scholar
[16]
E. Bagherpour, F. Qods, and R. Ebrahimi, Effect of geometric parameters on deformation behavior of simple shear extrusion, IOP Conf. Ser.: Mater. Sci. Eng. 63 (2014) 12046.
DOI: 10.1088/1757-899x/63/1/012046
Google Scholar
[17]
H. Miura, W. Nakamura, and M. Kobayashi, Room-temperature Multi-directional Forging of AZ80Mg Alloy to Induce Ultrafine Grained Structure and Specific Mechanical Properties, Procedia Engineering. 81 (2014) 534–539.
DOI: 10.1016/j.proeng.2014.10.035
Google Scholar
[18]
J. Xing, X. Y. Yang, H. Miura, and T. Sakai, Grain Refinement in Magnesium Alloy AZ31 during Multidirectional Forging under Decreasing Temperature Conditions, MSF. 488-489 (2005) 597–600.
DOI: 10.4028/www.scientific.net/msf.488-489.597
Google Scholar
[19]
Zhu, C.Y. Ban, J.Z. Cui, L. Li, Z.H. Zhao, and Y.B. Zuo, Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature, Transactions of Nonferrous Metals Society of China. 24 (2014) 1301–1306.
DOI: 10.1016/s1003-6326(14)63192-7
Google Scholar
[20]
P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metall and Mat Trans A. 30 (1999) 1989–(1997).
DOI: 10.1007/s11661-999-0009-9
Google Scholar
[21]
C. S. Jain and A. N. Bramley, Speed and Frictional Effects in Hot Forging, Proceedings of the Institution of Mechanical Engineers. 182 (1967) 783–798, (1967).
DOI: 10.1243/pime_proc_1967_182_059_02
Google Scholar
[22]
P. W. Wallace and J.A. Schey, Speed Effects In Hot Closed Die Forging, (1971).
Google Scholar
[23]
P. C. Sharath, K. R. Udupa, and G. V. P. Kumar, Effect of Multi Directional Forging on the Microstructure and Mechanical Properties of Zn-24 wt% Al-2 wt% Cu Alloy, Trans Indian Inst Met. 70 (2017) 89–96.
DOI: 10.1007/s12666-016-0863-2
Google Scholar
[24]
X. Zhou, J. Zhang, X. Chen, X. Zhang, and M. Li, Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment, Journal of Alloys and Compounds. 787 (2019) 551–559.
DOI: 10.1016/j.jallcom.2019.02.133
Google Scholar
[25]
M. Hong, D. Wu, R. S. Chen, and X. H. Du, Ductility enhancement of EW75 alloy by multi-directional forging, Journal of Magnesium and Alloys. 2 (2014) 317–324.
DOI: 10.1016/j.jma.2014.11.005
Google Scholar
[26]
C. Obara, F. M. Mwema, J. N. Keraita, H. Shagwira, and J. O. Obiko, A multi-response optimization of the multi-directional forging process for aluminium 7075 alloy using grey-based taguchi method, SN Appl. Sci. 3 (2021) 32.
DOI: 10.1007/s42452-021-04527-2
Google Scholar
[27]
P. Vimalanathan, G. Suresh, M. Rajesh, R. Manikandan, S. K. Rajesh Kanna, and V. Santhanam, A Study on Mechanical and Morphological Analysis of Banana/Sisal Fiber Reinforced IPN Composites, Fibers Polym. 22 (2021) 2261–2268.
DOI: 10.1007/s12221-021-0917-x
Google Scholar
[28]
N.G.S. Almeida, P.H.R. Pereira, C. D. Faria, M.T.P. Aguilar, and P. R. Cetlin, Mechanical behavior and microstructures of aluminum processed by low strain amplitude multi-directional confined forging, Journal of Materials Research and Technology. 9 (2020) 3190–3197.
DOI: 10.1016/j.jmrt.2020.01.065
Google Scholar
[29]
R. Lu et al., Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach, Journal of Materials Science & Technology. 80 (2021) 50–162.
DOI: 10.1016/j.jmst.2020.11.055
Google Scholar
[30]
S. Volkov and Volkova, Deformation Diagrams of Metals with Different Types of Microstructure Damage, AIP Conference Proceedings 1785 (2016) 040091.
DOI: 10.1063/1.4967148
Google Scholar
[31]
C. Kobayashi, T. Sakai, A. Belyakov, and H. Miura, Ultrafine grain development in copper during multidirectional forging at 195 K, Philosophical Magazine Letters. 87 (2007) 751–766.
DOI: 10.1080/09500830701566016
Google Scholar
[32]
D. Liu and D. Pons, Crack Propagation Mechanisms for Creep Fatigue: A Consolidated Explanation of Fundamental Behaviours from Initiation to Failure, Metals. 8 (2018) 623.
DOI: 10.3390/met8080623
Google Scholar
[33]
W. J. Bratina and S. Yue, Fatigue Crack Growth — A Metallurgist's Point of View, in: A. S. Krausz (Eds.), Time-Dependent Fracture, Springer., Netherlands, 1985, p.27–42.
DOI: 10.1007/978-94-009-5085-6_3
Google Scholar
[34]
M. Bacca, D. R. Hayhurst, and R. M. McMeeking, Continuous dynamic recrystallization during severe plastic deformation, Mechanics of Materials. 90 (2015) 148–156.
DOI: 10.1016/j.mechmat.2015.05.008
Google Scholar
[35]
Y. C. Lin, M.-S. Chen, and J. Zhong, Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel, Materials & Design. 30 (2009) 908–913.
DOI: 10.1016/j.matdes.2008.05.010
Google Scholar
[36]
X. Wang, H. S. Zurob, J. D. Embury, X. Ren, and I. Yakubtsov, Microstructural features controlling the deformation and recrystallization behaviour Fe–30%Mn and Fe–30%Mn–0.5%C, Materials Science and Engineering: A. 527 (2010) 16-17.
DOI: 10.1016/j.msea.2010.03.014
Google Scholar
[37]
Y. Zeng, Y. Chao, Z. Luo, Y. Cai, and R. Song, Effect of Multidirectional Forging and Heat Treatment on Mechanical Properties of In Situ ZrB2p/6061Al Composites, High Temperature Materials and Processes. 37 (2018) 603–612.
DOI: 10.1515/htmp-2016-0200
Google Scholar
[38]
Z. Zhixin, H. Weiping, and M. Qingchun, Effects of friction coefficient and shape of impact object on the fatigue life of specimens with impact damage, J. Phys.: Conf. Ser. 843 (2017) 12024.
DOI: 10.1088/1742-6596/843/1/012024
Google Scholar
[39]
M. A. Salevati, F. Akbaripanah, R. Mahmudi, K. H. Fekete, A. Heczel, and J. Gubicza, Comparison of the effects of isothermal equal channel angular pressing and multi-directional forging on mechanical properties of AM60 magnesium alloy, Materials Science and Engineering: A. 776 (2020) 139002.
DOI: 10.1016/j.msea.2020.139002
Google Scholar
[40]
J. Zhao, Y. Deng, J. Zhang, Z. Ma, and Y. Zhang, Effect of temperature and strain rate on the grain structure during the multi-directional forging of the Al Zn Mg Cu alloy, Materials Science and Engineering: A. 756 (2019) 119–128.
DOI: 10.1016/j.msea.2019.04.033
Google Scholar
[41]
V. V. Struzhanov, S. S. Volkov, and T. A. Volkova, Devolopment of microstructure damage in structurally heterogeneous materials under deformation, DREAM. 3 (2016) 21–30.
Google Scholar
[42]
Zhang, Z. Li, X. Sheng, Y. Gao, and Q. Lei, Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging, Fusion Engineering and Design. 159 (2020) 111766.
DOI: 10.1016/j.fusengdes.2020.111766
Google Scholar
[43]
E. V. Avtokratova et al., Structure and annealing behavior of an Al-Mg-TM alloy processed by equal channel angular pressing, LOM. 4 (2014) 93–95.
DOI: 10.22226/2410-3535-2014-2-93-95
Google Scholar
[44]
G. A. Salishchev, O. R. Valiakhmetov, and R. M. Galeyev, Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, J Mater Sci. 28 (1993) 2898–2902.
DOI: 10.1007/bf00354692
Google Scholar
[45]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science. 60 (2014) 130–207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[46]
Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia. 61 (2013) 782–817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[47]
E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol Lett. 65 (2017) 581.
DOI: 10.1007/s11249-016-0805-5
Google Scholar
[48]
A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling, Acta Materialia. 50 (2002) 4461–4476.
DOI: 10.1016/s1359-6454(02)00253-7
Google Scholar
[49]
T. Mineta, K. Hasegawa, and H. Sato, High strength and plastic deformability of Mg–Li–Al alloy with dual BCC phase produced by a combination of heat treatment and multi-directional forging in channel die, Materials Science and Engineering: A. 773 (2020) 138867.
DOI: 10.1016/j.msea.2019.138867
Google Scholar
[50]
H. Miura, X. Yang, and T. Sakai, Evolution of Ultra-Fine Grains in AZ31 and AZ61 Mg Alloys during Multi Directional Forging and Their Properties, Mater. Trans., 49 (2008) 1015–1020.
DOI: 10.2320/matertrans.mc200737
Google Scholar
[51]
M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. O. Mosleh, W. S. AbuShanab, and V. K. Portnoy, Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al⁻Mg⁻Mn Alloy, Materials (Basel, Switzerland). 11 (2018).
DOI: 10.3390/ma11112166
Google Scholar
[52]
A. Grajcar, A. Kozłowska, S. Topolska, and M. Morawiec, Effect of Deformation Temperature on Microstructure Evolution and Mechanical Properties of Low-Carbon High-Mn Steel, Advances in Materials Science and Engineering. 2018 (2018) 1–7.
DOI: 10.1155/2018/7369827
Google Scholar
[53]
M. Eskandari, A. Zarei-Hanzaki, J. A. Szpunar, M. A. Mohtadi-Bonab, A. R. Kamali, and M. Nazarian-Samani, Microstructure evolution and mechanical behavior of a new microalloyed high Mn austenitic steel during compressive deformation, Materials Science and Engineering: A. 615 (2014) 424–435.
DOI: 10.1016/j.msea.2014.07.084
Google Scholar
[54]
X. Chen et al., Effect of Temperature on the Mechanical Properties and Deformation Mechanism of a High Mn Steel With Composite Structure, Front. Mater. 7 (2020) 143.
Google Scholar
[55]
H. Miura and M. Ito, Improvement in Mechanical Properties of Coarse-Grained AZ61 Mg Alloy by Multidirectional Forging and Ultrafine Grain Refinement, MSF. 706-709 (2012) 1227–1232.
DOI: 10.4028/www.scientific.net/msf.706-709.1227
Google Scholar
[56]
M. Noda, M. Hirohashi, and K. Funami, Low Temperature Superplasticity and Its Deformation Mechanism in Grain Refinement of Al-Mg Alloy by Multi-Axial Alternative Forging, Mater. Trans. 44 (2003) 2288–2297.
DOI: 10.2320/matertrans.44.2288
Google Scholar