Enhancing the Oxidation Behavior of Zr-Modified Aluminide Coatings on Inconel 600 at Different Temperatures

Article Preview

Abstract:

In the recent search nickel superalloy Inconel 600 was coated with Zr-modified aluminide diffusion coating using pack cementation technique. Diffusion coating was done in a single step utilizing a conversion reaction of 10% Al, 2% ZrO2, 4% NaCl, and 84 percent Al2O3 (wt. percent ) and a simultaneous aluminizing-zirconizing process. The diffusion coating operations were performed in an argon environment at 1050 °C for 10 hours. The test of the isothermal oxidation in dry air was performed on the Inconel Alloy 600 (IA600) without and with Zr-modified aluminide coating for 800-1000 °C. The oxidation kinetic of IA600 and its coated system was found to follow the parabolic law. The activation energy is 243 kJ/mol. for the coated system and 457 kJ/mol. for the uncoated system. XRD analysis show that oxide phases are formed on an uncoated IA600 surface during most of the oxidation exposure conditions are NiO, Cr2O3, Fe2O3, NiCr2O4 and NiFe2O4, , whereas alumina scale is the major oxide that is obtained on the surface of coated samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-26

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, X. Zhao, C. Zhao, W. Hao, X. Wang, P. Xiao, The oxidation performance for Zr doped nickel aluminide coating by composite electrodepositing and pack cementation, Corros. Sci. 123 (2017) 103–115.

DOI: 10.1016/j.corsci.2017.04.008

Google Scholar

[2] S. Hamadi, M.-P. Bacos, M. Poulain, A. Seyeux, V. Maurice, P. Marcus, Oxidation resistance of a Zr-doped NiAl coating thermochemically deposited on a nickel-based superalloy, Surf. Coat. Technol. 204 (2009) 756–760.

DOI: 10.1016/j.surfcoat.2009.09.073

Google Scholar

[3] S. Hamadi, M-.P. Bacos, M. Poulain, S. Zanna, A. Seyeux, V. Maurice, P. Marcus, Oxidation of a Zr-doped NiAl bondcoat thermochemically deposited on a nickel-based superalloy, Mate. High Temp. 26 (2009) 195-198.

DOI: 10.3184/096034009x464320

Google Scholar

[4] S.J. Hong, G.H. Hwang, W.K. Han, K.S. Lee, S.G. Kang, Effect of zirconium addition oncyclic oxidation behavior of platinum-modified aluminide coating on nickel-based superalloy, Intermet. 18 (2010) 864–870.

DOI: 10.1016/j.intermet.2009.12.012

Google Scholar

[5] S. Naveos, G. Oberlaender, Y. Cadoret, P. Josso, M-.P. Bacos, Zirconium Modified Aluminide by a Vapour Pack Cementation Process for Thermal Barrier Applications: Formation Mechanisms and Properties, Mater. Sci. Forum 461-464 (2004) 375-382.

DOI: 10.4028/www.scientific.net/msf.461-464.375

Google Scholar

[6] M. P. Bacos, J.-M. Dorvaux, S. Landais, O. Lavigne, R. Mévrel, M. Poulain, C. Rio, M.-H. Vidal-Sétif, 10 Years-Activities at Onera on Advanced Thermal Barrier Coatings, Aerosp. Lab (2011) 1-14.

Google Scholar

[7] R. Sitek, P. Kwasniak, M. Sopicka-Lizer, J. Borysiuk, J. Kaminski, J. Mizera, K.J. Kurzydłowski, Experimental and ab-initio study of the Zr- and Cr-enriched aluminide layer produced on an IN 713C Inconel substrate by CVD; investigations of the layer morphology, structural stability, mechanical properties, and corrosion resistance, Interme. 74 (2016) 15-24.

DOI: 10.1016/j.intermet.2016.04.003

Google Scholar

[8] M. Zagula-Yavorska, J. Sieniawski, J. Romanowska, Oxidation behaviour of zirconium-doped NiAl coatings deposited on pure nickel, Arch. Mater. Sci. Eng., 58 (2012) 250-254.

DOI: 10.1007/s12034-013-0579-4

Google Scholar

[9] J. Romanowska, E. Dryzek, J. Morgiel, K. Siemek, Ł. Kolek, M. Zagula-Yavorska, Microstructure and positron lifetimes of zirconium modified aluminide coatings, Arch. Civ. Mech. Eng. 18 (2018) 1150 – 1155.

DOI: 10.1016/j.acme.2018.03.002

Google Scholar

[10] R. Bianco, and R.A. Rapp, Pack Cementation Aluminide Coatings on Superalloys: Codeposition of Cr and Reactive Elements, J. Electrochem. Soc. 140 (1993) 1181- 1190.

DOI: 10.1149/1.2056219

Google Scholar

[11] R. Khakpour, M. Soltani, S. Heydarzadeh, Microstructure and High Temperature Oxidation Behaviour of Zr- Doped Aluminide Coatings Fabricated on Nickel-based Super Alloy, Proc. Mater. Sci. 11 (2015) 515 – 521.

DOI: 10.1016/j.mspro.2015.11.011

Google Scholar

[12] M.S. Priest and Y. Zhang, Synthesis of clean aluminide coatings on Ni-based superalloys via a modified pack cementation process, Mater. Corros.66 (2015) 1111-1119.

DOI: 10.1002/maco.201408046

Google Scholar

[13] L. Qian, F. Xu, K.T. Voisey, V. Nekouie, Z. Zhou, V.V. Silberschmidt, X. Hou, Incorporation and evolution of ZrO2nano-particles in Pt-modified aluminide coating for high temperature applications, Surf. Coat. Technol. 311 (2017) 238-247.

DOI: 10.1016/j.surfcoat.2016.12.106

Google Scholar

[14] M. Fukumoto, T. Suzuki, M. Hara and T. Narita, Effect of the Electrodeposition Temperature on the Cyclic-Oxidation Resistance of Ni Aluminide Containing Zr Formed by Molten-Salt Electrodeposition, Mater. Trans. 50 (2009) 335 - 340.

DOI: 10.2320/matertrans.mra2008293

Google Scholar

[15] V.A. Ravi, Pack Cementation Coatings, in: S.D. Cramer, B.S. Covino Jr. (Eds.), Corrosion: Fundamentals, Testing, and Protection, Vol. 13A, ASM Handbook, ASM International (2003) pp.763-771.

DOI: 10.31399/asm.hb.v13a.a0003686

Google Scholar

[16] K. H. Stern, Metallurgical and Ceramic Protective Coatings, Chapman and Hall, London, (1996) pp.236-260.

Google Scholar

[17] J.Xiao, N. Prud'homme, N.LiV.Ji, Influence of humidity on high temperature oxidation of Inconel 600 alloy: Oxide layers and residual stress study600 alloy: Oxide layers and residual stress study, Applied Surface Science, Volume 284, ( 2013)Pages 446-452.

DOI: 10.1016/j.apsusc.2013.07.117

Google Scholar

[18] V. Perovic,, A. Perovic, G. C. Weatherly and A.M. Brennenstuhl, Microstructure and Microchemistry of Inconel 600 STEAM Generator Tubing, Volume 6 - Issue S2 - August (2000).

DOI: 10.1017/s1431927600034279

Google Scholar

[19] Qixiang Fan, Haojun Yu , Tie-Gang Wang, Zhenghuan Wu and Yanmei Liu, Preparation and Isothermal Oxidation Behavior of Zr-Doped, Pt-Modified Aluminide Coating Prepared by a Hybrid Process, Coatings (2018)8, 1;.

DOI: 10.3390/coatings8010001

Google Scholar

[20] R. Khakpoura , M.Soltania, H.Sohia, Microstructure and High Temperature Oxidation behaviour of Zr doped Aluminide Coatings fabricated on Nickel-based Super Alloy, Procedia Materials Science (2015).

DOI: 10.1016/j.mspro.2015.11.011

Google Scholar

[21] Y. Wanga,, J. L. Smialekb and M. Sunesona, Oxidation Behavior of Hf-Modified Aluminide Coatings on Inconel718 at 1050°C , Journal of Coating Science and Technology, 2014, 1, 25-45.

Google Scholar

[22] N. Yurchenko, E. Panina,S. Zherebtsov,G. Salishchev and N. Stepanov, Oxidation Behavior of Refractory AlNbTiVZr0.25 High-Entropy Alloy Materials 2018, 11(12), 2526; https://doi.org/10.3390/ma11122526.

DOI: 10.3390/ma11122526

Google Scholar

[23] N. M. DAWOOD & O. I. ALI , MODIFICATION OF OXIDATION BEHAVIOR OF Ni Ti SHAPE-MEMORY ALLOY BY YTTRIUM ADDITION, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249–6890; ISSN(E): 2249–8001,Vol. 10, Issue 2( Apr 2020) 1187–1204.

Google Scholar

[24] H. Kyung, C. K. Kim, Microstructural Evolution of Duplex Grain Structure and Interpretation of the Mechanism for NiO Scales Grown on Pure Ni – and Cr – Doped Substrate During High Temperature Oxidation, Materials Science and Engineering B76, (2000)pp.173-183.

DOI: 10.1016/s0921-5107(00)00435-9

Google Scholar

[25] C. Salmon, D. Tiberghien, R. Molins, C. Olin, and F. Delanny, Oxidation Behavior in Air of Thin Alloy 601 Fibers, MATH, Vol. 17, No.2(2000) pp.271-278.

DOI: 10.1179/mht.2000.17.2.014

Google Scholar

[26] G. Borchardt and G. Streh1 (2001) On Deviations from Parabolic Growth Kinetics in High Temperature Oxidation, Material Aspects in Automotive Catalytic Converters, Hans Bode Copyright Wiley-VCH Verlag GmbH &Co. K aA ISBN: 3-527-30491-6(2002).

DOI: 10.1002/3527600531.ch9

Google Scholar