[1]
John A. Purkiss and Long-yuan Li, Fire Safety Engineering Design of Structures, CRC Press Taylor &. Francis, (2014).
Google Scholar
[2]
Byeongnam Jo, Koji Okamoto, Experimental Investigation into Creep Buckling of a Stainless-Steel Plate Column Under Axial Compression at Extremely High Temperatures, Journal of Pressure Vessel Technology, FEBRUARY (2017), Vol. 139.
DOI: 10.1115/1.4033155
Google Scholar
[3]
Kankanamge, D. and Mahendran, M. Behaviour and design of cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. Thin-Walled Structures, (2012) 61, 213–228.
DOI: 10.1016/j.tws.2012.05.009
Google Scholar
[4]
Kirby, B.R., Lapwood, D.J. and Thompson G. The Reinstatement of Fire Damaged Steel and Iron Framed Structures. Rotherham: Swinden Technology Centre, (1986).
Google Scholar
[5]
Latham, D.J., Kirby, B.R. and Thompson G. The temperatures attained by unprotected structural steelwork in experimental natural fires. Fire Safety Journal, (1987) 12, 139–152.
DOI: 10.1016/0379-7112(87)90029-4
Google Scholar
[6]
Liew, J. and Chen, H. Explosion and fire analysis of steel frames using fiber element approach. Journal of Structural Engineering, (2004) 130, 991–1000.
DOI: 10.1061/(asce)0733-9445(2004)130:7(991)
Google Scholar
[7]
Lua, H., Zhao, X.L. and Han, L.H. Fire behaviour of high strength self-consolidating concrete filled steel tubular stub columns. Journal of Constructional Steel Research, (2011) 65, 1995–(2010).
DOI: 10.1016/j.jcsr.2009.06.013
Google Scholar
[8]
Nadjai, A., Bailey, C.G., Vassart, O. et al. Full-scale fire test on a composite floor slab incorporating long span cellular steel beams. The Structural Engineer, (2011) 89, 18–25.
Google Scholar
[9]
Mossa, P.J., Dhakal, R.P., Bong, M.W. et al. Design of steel portal frame buildings for fire safety. Journal of Constructional Steel Research, (2009) 65, 1216–1224.
DOI: 10.1016/j.jcsr.2008.09.003
Google Scholar
[10]
Ranawaka, T. and Mahendran, M. Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures. Fire Safety Journal, (2009) 44, 219–229.
DOI: 10.1016/j.firesaf.2008.06.006
Google Scholar
[11]
Shahbazian, A. and Wang, Y., Direct strength method for calculating distortional buckling capacity of cold-formed thin-walled steel columns with uniform and non-uniform elevated temperatures. Thin-Walled Structures, (2012) 53, 188–199.
DOI: 10.1016/j.tws.2012.01.006
Google Scholar
[12]
Meijing Liu, Shenggang Fan, Runmin Ding, Guoqiang Chen, Erfeng Du, Kun Wang, Experimental investigation on the fire resistance of restrained stainless-steel H-section columns, Journal of Constructional Steel Research 163 (2019) 105770.
DOI: 10.1016/j.jcsr.2019.105770
Google Scholar
[13]
Y. Li, W.G. Li, X.H. Zhang, et al., Modeling of temperature dependent yield strength for stainless steel considering nonlinear behaviour and the effect of phase transition, Constr. Build. Mater. 159 (2018) 147e154.
DOI: 10.1016/j.conbuildmat.2017.10.106
Google Scholar
[14]
Fahem, A.H., Fareed, M.M., Kadhum, M.M., Lafta, O.A., The Effect of Cyclic Twist Angle on Mechanical Properties for AISI 1038 Medium Carbon Steel, Periodicals of Engineering and Natural Sciences this, (2021), 9(3), p.98–105.
DOI: 10.21533/pen.v9i3.2103
Google Scholar
[15]
Jo, B., Sagawa, W., and Okamoto, K., Buckling Behaviors of Metallic Columns Under Compressive Load at Extremely High Temperatures,, ASME Paper, (2014) No. PVP2014-28683.
DOI: 10.1115/pvp2014-28683
Google Scholar
[16]
Jo, B., Sagawa, W., and Okamoto, K., Measurement of Buckling Load for Metallic Plate Columns in Severe Accident Conditions,, Nucl. Eng. Des., (2014) 274, p.118–128.
DOI: 10.1016/j.nucengdes.2014.04.018
Google Scholar
[17]
Frano, R., and Forasassi, G., Experimental Evidence of Imperfection Influence on the Buckling of Thin Cylindrical Shell Under Uniform External Pressure,, Nucl. Eng. Des., (2009) 239(2), p.193–200.
DOI: 10.1016/j.nucengdes.2008.09.004
Google Scholar
[18]
Turner, A. P. L., and Martin, T. J., Cyclic Creep of Type 304 Stainless Steel During Unbalanced Tension-Compression Loading at Elevated Temperature,, Metall. Trans. A, (1980) 11(3), p.475–481.
DOI: 10.1007/bf02654571
Google Scholar
[19]
Furumura, F., Ave, T., and Kim, W. J., Creep Buckling of Steel Columns at High Temperatures—Part II: Creep Buckling Tests and Numerical Analysis,, J. Struct. Constr. Eng., (1986), 361, p.142–151.
DOI: 10.3130/aijsx.361.0_142
Google Scholar
[20]
Zeng, J. L., Tan, K. H., and Huang, Z. F, Primary Creep Buckling of Steel Columns in Fire,, J. Constr. Steel Res., (2003), 59(8), p.951–970.
DOI: 10.1016/s0143-974x(03)00027-0
Google Scholar
[21]
Hawas, M.N., Fahem, A.H., Design of Steam Turbine Blade Under Centrifugal Force Effect with Mutation of Rotational Speed and Blade Tongue Length, International Journal of Mechanical Engineering, (2022), 7(1), p.649–656.
Google Scholar