[1]
W. Wang et al., Friction Stir Processing of Magnesium Alloys: A Review,, Acta Metall. Sin. 33 (2020) 43–57.
Google Scholar
[2]
R. Singh et al., Powder bed fusion process in additive manufacturing: An overview,, Mater. Today Proc., 26-2 (2020) 3058-3070.
Google Scholar
[3]
A. Pandey, A. Awasthi, and K. K. Saxena, Metallic implants with properties and latest production techniques: a review,, Advances in Materials and Processing Technologies. 6 (2020) 405-440.
DOI: 10.1080/2374068x.2020.1731236
Google Scholar
[4]
S. Arokiasamy and B. Anand Ronald, Enhanced properties of Magnesium based metal matrix composites via Friction Stir Processing,, 5-2-2 (2018) 6934-6939.
DOI: 10.1016/j.matpr.2017.11.355
Google Scholar
[5]
S. H. Abdollahi, F. Karimzadeh, and M. H. Enayati, Development of surface composite based on Mg-Al-Ni system on AZ31 magnesium alloy and evaluation of formation mechanism,, J. Alloys Compd., 623 (2015) 335-341.
DOI: 10.1016/j.jallcom.2014.11.029
Google Scholar
[6]
J.-Y. Kim, S.-M. Lee, J.-W. Hwang, and J.-W. Byeon, Fabrication of AZ31/CNT Surface Composite by Friction Stir Processing,, J. Korean Soc. Heat Treat., 28:6 (2015) 315-321.
DOI: 10.12656/jksht.2015.28.6.315
Google Scholar
[7]
H.S. Arora, H. Singh, B. K. Dhindaw, and H. S. Grewal, Improving the tribological properties of mg based AZ31 alloy using friction stir processing,, 585 (2012) 579-583.
DOI: 10.4028/www.scientific.net/amr.585.579
Google Scholar
[8]
M. Rezaeian-delouei, H. Abdollah-Pour, M. Tajally, and S. M. Mousavizade, Investigation of Microstructure and Wear Resistance of AZ31–SiO2 Surface Nanocomposite by Friction Stir Processing,, Phys. Met. Metallogr., 121(2020)1347–1357.
DOI: 10.1134/s0031918x20130177
Google Scholar
[9]
J. guang Liu et al., Microstructure evolution and mechanical properties of Mg-12Zn-2Y alloy containing quasicrystal phase fabricated by different casting processes,, China Foundry, 18 (2021) 147–154.
DOI: 10.1007/s41230-021-0132-9
Google Scholar
[10]
Y. X. Gan, D. Solomon, and M. Reinbolt, Friction stir processing of particle reinforced composite materials,, Materials (Basel)., 3:(1) (2010) 329-350.
DOI: 10.3390/ma3010329
Google Scholar
[11]
A.P. Gerlich, Critical assessment: friction stir processing, potential, and problems,, Mater. Sci. Technol. (United Kingdom), 33:10 (2017) 1139-1144.
DOI: 10.1080/02670836.2017.1300420
Google Scholar
[12]
B.R. Sunil, G.P.K. Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing,, Journal of Magnesium and Alloys. 4:1 (2016) 52-61.
DOI: 10.1016/j.jma.2016.02.001
Google Scholar
[13]
J. Peng et al., The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing,, Sci. Rep., 8, 4196 (2018).
DOI: 10.1038/s41598-018-22344-3
Google Scholar
[14]
Q.Y. Che et al., Microstructure and mechanical properties of magnesium–lithium alloy prepared by friction stir processing,, Rare Met., 40 (2021) 2552–2559.
DOI: 10.1007/s12598-019-01217-2
Google Scholar
[15]
M. Rezaeian-Delouei, H. Abdollah-Pour, M. Tajally, and S. M. Mousavizade, An investigation of microstructure, wear and corrosion resistance of AZ31B-SiO2-graphite hybrid surface composite produced by friction stir processing,, Mater. Res. Express, 6:12 (2019)1250a7.
DOI: 10.1088/2053-1591/ab3b20
Google Scholar
[16]
D. Yadav and R. Bauri, Effect of friction stir processing on microstructure and mechanical properties of aluminium,, Mater. Sci. Eng. A, 539 (2012) 85-92.
DOI: 10.1016/j.msea.2012.01.055
Google Scholar
[17]
N. Nadammal, S. V. Kailas, J. Szpunar, and S. Suwas, Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy,, Mater. Charact., 140 (2018) 134-146.
DOI: 10.1016/j.matchar.2018.03.044
Google Scholar
[18]
L. B. Johannes and R. S. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum,, Mater. Sci. Eng. A, 464:1 (2007) 255-260.
DOI: 10.1016/j.msea.2007.01.141
Google Scholar
[19]
N. Gangil, S. Maheshwari, and A. N. Siddiquee, Multipass FSP on AA6063-T6 Al: Strategy to fabricate surface composites,, Mater. Manuf. Process., 33:7 (2018) 805-811.
DOI: 10.1080/10426914.2017.1415448
Google Scholar
[20]
V. Sharma, U. Prakash, and B. V. M. Kumar, Surface composites by friction stir processing: A review,, J. Mater. Process. Technol., 224 (2015) 117-134.
DOI: 10.1016/j.jmatprotec.2015.04.019
Google Scholar
[21]
A. Kumar, S. Kumar, and N. K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites,, J. Magnes. Alloy., 6:3 (2018) 245-254.
DOI: 10.1016/j.jma.2018.05.006
Google Scholar
[22]
C.S. Goh, K.S. Soh, P.H. Oon, and B.W. Chua, Effect of squeeze casting parameters on the mechanical properties of AZ91-Ca Mg alloys,, Mater. Des.,31 (2010) S50-S53.
DOI: 10.1016/j.matdes.2009.11.039
Google Scholar
[23]
P. Doležal et al., Influence of processing techniques on microstructure and mechanical properties of a biodegradable Mg-3Zn-2Ca alloy,, Materials (Basel)., 28;9(11): (2016) 880.
DOI: 10.3390/ma9110880
Google Scholar
[24]
S. Lü, X. Yang, and S. Wu, Microstructure and Mechanical Properties of Rheo-squeeze Casting LPSO Structure Reinforced Mg-Zn-Y-Zr Alloys,, Tezhong Zhuzao Ji Youse Hejin/Special Cast. Nonferrous Alloy., 40(1) (2020) 1-6.
Google Scholar
[25]
R. Radha and D. Sreekanth, Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications,, J. Magnes. Alloy., 8:2 (2020) 452-460.
DOI: 10.1016/j.jma.2019.05.010
Google Scholar
[26]
C. H. Fan, Z. H. Chen, W. Q. He, J. H. Chen, and D. Chen, Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al-Zn-Mg-Cu alloy,, Journal of Alloys and Compounds. 504:2 (2010) L42-L45.
DOI: 10.1016/j.jallcom.2010.06.012
Google Scholar
[27]
X. Fang, S. Lü, L. Zhao, J. Wang, L. Liu, and S. Wu, Microstructure and mechanical properties of a novel Mg-RE-Zn-alloy fabricated by rheo-squeeze casting,, Mater. Des., 94 (2016) 353-359.
DOI: 10.1016/j.matdes.2016.01.063
Google Scholar
[28]
N. Sharma, G. Singh, P. Sharma, and A. Singla, Development of Mg-Alloy by Powder Metallurgy Method and Its Characterization,, Powder Metall. Met. Ceram., 58, (2019) 163–169.
DOI: 10.1007/s11106-019-00060-5
Google Scholar
[29]
Z.R. Yang, S.Q. Wang, X.H. Cui, Y.T. Zhao, M.J. Gao, and M.X. Wei, Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system,, Sci. Technol. Adv. Mater., 9 (2008) 1468-6996.
DOI: 10.1088/1468-6996/9/3/035005
Google Scholar
[30]
M. A. F. Romzi, J. Alias, and M. I. M. Ramli, Recent progress on the corrosion characterization of magnesium (Mg) prepared by powder metallurgy technique,, IOP Conf. Ser. Mater. Sci. Eng., 1068 (2021) 112004.
DOI: 10.1088/1757-899x/1068/1/012004
Google Scholar
[31]
A. Kumar and P. M. Pandey, Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy,, J. Magnes. Alloy., 8:3 (2020) 883-898.
DOI: 10.1016/j.jma.2020.02.011
Google Scholar
[32]
D. Annur, A. Suhardi, M. I. Amal, M. S. Anwar, and I. Kartika, Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application,, J. Phys. Conf. Ser., 817 (2017) 012062.
DOI: 10.1088/1742-6596/817/1/012062
Google Scholar
[33]
Özgünn, K. Aslantaş, and A. Ercetin, Powder metallurgy mg-sn alloys: Production and characterization,, Sci. Iran., 27 (2020) 1255-1265.
Google Scholar
[34]
J. Yu, J. Wang, Q. Li, J. Shang, J. Cao, and X. Sun, Effect of Zn on microstructures and properties of Mg-Zn alloys prepared by powder metallurgy method,, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 45:11 (2016) 2757-2762.
DOI: 10.1016/s1875-5372(17)30035-8
Google Scholar
[35]
Z. Z. Fang et al., Powder metallurgy of titanium–past, present, and future,, Int. Mater. Rev., 63:7 (2018) 407-459.
Google Scholar
[36]
H. Danninger, What will be the future of powder metallurgy?,, Powder Metall. Prog., 18:2 (2018) 70-79.
DOI: 10.1515/pmp-2018-0008
Google Scholar
[37]
Q. Dong, L. Q. Chen, M. J. Zhao, and J. Bi, Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process,, Mater. Lett., 58:6 (2004) 920-926.
DOI: 10.1016/j.matlet.2003.07.037
Google Scholar
[38]
C. J. Deng, M. L. Wong, M. W. Ho, P. Yu, and D. H. L. Ng, Formation of MgO and Mg-Zn intermetallics in an Mg-based composite by in situ reactions,, Compos. Part A Appl. Sci. Manuf., 36:5 (2005) 551-557.
DOI: 10.1016/j.compositesa.2004.09.001
Google Scholar
[39]
T. Lei, W. Tang, S. H. Cai, F. F. Feng, and N. F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction,, Corros. Sci., 54 (2012) 270-277.
DOI: 10.1016/j.corsci.2011.09.027
Google Scholar
[40]
H. Li et al., Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process,, J. Alloys Compd., 785(2019) 146-155.
DOI: 10.1016/j.jallcom.2019.01.144
Google Scholar
[41]
C. Yang, H. Lü, G. Chen, and F. Liu, In situ synthesis and formation mechanism of AlN in Mg-Al alloys,, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 45:1 (2016) 18-22.
DOI: 10.1016/0142-1123(96)81879-2
Google Scholar
[42]
C. Suryanarayana, Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials,, Research, 2019 (2019) 17.
DOI: 10.34133/2019/4219812
Google Scholar
[43]
T. Nobuki, J. C. Crivello, F. Cuevas, and J. M. Joubert, Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties,, Int. J. Hydrogen Energy, 44:21 (2019) 10770-10776.
DOI: 10.1016/j.ijhydene.2019.02.203
Google Scholar
[44]
M. B. Costa, R. Mateus, M. Guedes, and A. C. Ferro, Mechanical alloying in the Li-Sn system,, Mater. Lett. X, 6 (2020) 100045.
DOI: 10.1016/j.mlblux.2020.100045
Google Scholar
[45]
A.E.A. Al-maamari, A.A. Iqbal, and D.M. Nuruzzaman, Wear and mechanical characterization of Mg–Gr self-lubricating composite fabricated by mechanical alloying,, J. Magnes. Alloy., 7:2 (2019) 283-290.
DOI: 10.1016/j.jma.2019.04.002
Google Scholar
[46]
A. Yamazaki, J. Kaneko, and M. Sugamata, Mechanical alloying of magnesium and Mg-Al alloys with MnO2 and Fe2O3,, Keikinzoku/Journal Japan Inst. Light Met., 419-422 (2002) 829-836.
DOI: 10.2464/jilm.52.421
Google Scholar
[47]
H. Hou, T. Zhu, Y. Wang, and W. Gao, Effect of Sn and Pb additions on microstructure of Mg-6Al-1Zn AS-cast magnesium alloys,, 27:19 (2013) 1341023.
DOI: 10.1142/s0217984913410236
Google Scholar
[48]
P.S. Grant, Spray forming,, Progress in Materials Science. 39 (1995) 497-545.
Google Scholar
[49]
G.S.E. Antipas, Review of gas atomisation and spray forming phenomenology,, Powder Metall., 56:4 (2013) 317-330.
DOI: 10.1179/1743290113y.0000000057
Google Scholar
[50]
M. Gupta and W.L.E. Wong, Magnesium-based nanocomposites: Lightweight materials of the future,, Materials Characterization. 105 (2015) 30-46.
DOI: 10.1016/j.matchar.2015.04.015
Google Scholar
[51]
J. Ann Gan and C.C. Berndt, Thermal spray forming of titanium and its alloys,, in Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann 2015 425-446.
DOI: 10.1016/b978-0-12-800054-0.00023-x
Google Scholar
[52]
A. Kumar Shukla and J. Dutta Majumdar, Studies on microstructure and mechanical properties of aluminium foam prepared by Spray Forming Route,, 35 (2019) 861–865.
DOI: 10.1016/j.promfg.2019.06.032
Google Scholar
[53]
T. Ebert, F. Moll, and K.U. Kainer, Spray forming of magnesium alloys and composites,, Powder Metall., 40 (1997) 126-130.
DOI: 10.1179/pom.1997.40.2.126
Google Scholar
[54]
V.C. Srivastava and S.N. Ojha, Microstructure and electrical conductivity of Al-SiCp composites produced by spray forming process,, Bull. Mater. Sci.,28 (2005) 125-130.
DOI: 10.1007/bf02704231
Google Scholar