A Review of Magnesium Based MMC Fabrication Techniques for Biomedical Applications

Article Preview

Abstract:

The magnesium is selected for the future implants material due to its excellent biocompatibility behavior. The biodegradable and biocompatible nature of Mg and its alloy make it prime choice for the development of bio-implants. The mechanical properties of Mg are similar to natural human bone therefore it can be used for temporary implantation for supporting a fracture bone. The rapid biodegradation of pure Mg before the healing time, raise the requirement to develop a metal matrix composites of Mg. The prominent technique of MMC fabrication is friction stir processing (FSP). The FSP is widely used for fabrication of surface composites and also used for grain structure refining and strengthening. The current article reviewed the various surface composites of Mg developed by FSP for alteration of biodegradation and mechanical properties. .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-150

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Wang et al., Friction Stir Processing of Magnesium Alloys: A Review,, Acta Metall. Sin. 33 (2020) 43–57.

Google Scholar

[2] R. Singh et al., Powder bed fusion process in additive manufacturing: An overview,, Mater. Today Proc., 26-2 (2020) 3058-3070.

Google Scholar

[3] A. Pandey, A. Awasthi, and K. K. Saxena, Metallic implants with properties and latest production techniques: a review,, Advances in Materials and Processing Technologies. 6 (2020) 405-440.

DOI: 10.1080/2374068x.2020.1731236

Google Scholar

[4] S. Arokiasamy and B. Anand Ronald, Enhanced properties of Magnesium based metal matrix composites via Friction Stir Processing,, 5-2-2 (2018) 6934-6939.

DOI: 10.1016/j.matpr.2017.11.355

Google Scholar

[5] S. H. Abdollahi, F. Karimzadeh, and M. H. Enayati, Development of surface composite based on Mg-Al-Ni system on AZ31 magnesium alloy and evaluation of formation mechanism,, J. Alloys Compd., 623 (2015) 335-341.

DOI: 10.1016/j.jallcom.2014.11.029

Google Scholar

[6] J.-Y. Kim, S.-M. Lee, J.-W. Hwang, and J.-W. Byeon, Fabrication of AZ31/CNT Surface Composite by Friction Stir Processing,, J. Korean Soc. Heat Treat., 28:6 (2015) 315-321.

DOI: 10.12656/jksht.2015.28.6.315

Google Scholar

[7] H.S. Arora, H. Singh, B. K. Dhindaw, and H. S. Grewal, Improving the tribological properties of mg based AZ31 alloy using friction stir processing,, 585 (2012) 579-583.

DOI: 10.4028/www.scientific.net/amr.585.579

Google Scholar

[8] M. Rezaeian-delouei, H. Abdollah-Pour, M. Tajally, and S. M. Mousavizade, Investigation of Microstructure and Wear Resistance of AZ31–SiO2 Surface Nanocomposite by Friction Stir Processing,, Phys. Met. Metallogr., 121(2020)1347–1357.

DOI: 10.1134/s0031918x20130177

Google Scholar

[9] J. guang Liu et al., Microstructure evolution and mechanical properties of Mg-12Zn-2Y alloy containing quasicrystal phase fabricated by different casting processes,, China Foundry, 18 (2021) 147–154.

DOI: 10.1007/s41230-021-0132-9

Google Scholar

[10] Y. X. Gan, D. Solomon, and M. Reinbolt, Friction stir processing of particle reinforced composite materials,, Materials (Basel)., 3:(1) (2010) 329-350.

DOI: 10.3390/ma3010329

Google Scholar

[11] A.P. Gerlich, Critical assessment: friction stir processing, potential, and problems,, Mater. Sci. Technol. (United Kingdom), 33:10 (2017) 1139-1144.

DOI: 10.1080/02670836.2017.1300420

Google Scholar

[12] B.R. Sunil, G.P.K. Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing,, Journal of Magnesium and Alloys. 4:1 (2016) 52-61.

DOI: 10.1016/j.jma.2016.02.001

Google Scholar

[13] J. Peng et al., The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing,, Sci. Rep., 8, 4196 (2018).

DOI: 10.1038/s41598-018-22344-3

Google Scholar

[14] Q.Y. Che et al., Microstructure and mechanical properties of magnesium–lithium alloy prepared by friction stir processing,, Rare Met., 40 (2021) 2552–2559.

DOI: 10.1007/s12598-019-01217-2

Google Scholar

[15] M. Rezaeian-Delouei, H. Abdollah-Pour, M. Tajally, and S. M. Mousavizade, An investigation of microstructure, wear and corrosion resistance of AZ31B-SiO2-graphite hybrid surface composite produced by friction stir processing,, Mater. Res. Express, 6:12 (2019)1250a7.

DOI: 10.1088/2053-1591/ab3b20

Google Scholar

[16] D. Yadav and R. Bauri, Effect of friction stir processing on microstructure and mechanical properties of aluminium,, Mater. Sci. Eng. A, 539 (2012) 85-92.

DOI: 10.1016/j.msea.2012.01.055

Google Scholar

[17] N. Nadammal, S. V. Kailas, J. Szpunar, and S. Suwas, Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy,, Mater. Charact., 140 (2018) 134-146.

DOI: 10.1016/j.matchar.2018.03.044

Google Scholar

[18] L. B. Johannes and R. S. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum,, Mater. Sci. Eng. A, 464:1 (2007) 255-260.

DOI: 10.1016/j.msea.2007.01.141

Google Scholar

[19] N. Gangil, S. Maheshwari, and A. N. Siddiquee, Multipass FSP on AA6063-T6 Al: Strategy to fabricate surface composites,, Mater. Manuf. Process., 33:7 (2018) 805-811.

DOI: 10.1080/10426914.2017.1415448

Google Scholar

[20] V. Sharma, U. Prakash, and B. V. M. Kumar, Surface composites by friction stir processing: A review,, J. Mater. Process. Technol., 224 (2015) 117-134.

DOI: 10.1016/j.jmatprotec.2015.04.019

Google Scholar

[21] A. Kumar, S. Kumar, and N. K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites,, J. Magnes. Alloy., 6:3 (2018) 245-254.

DOI: 10.1016/j.jma.2018.05.006

Google Scholar

[22] C.S. Goh, K.S. Soh, P.H. Oon, and B.W. Chua, Effect of squeeze casting parameters on the mechanical properties of AZ91-Ca Mg alloys,, Mater. Des.,31 (2010) S50-S53.

DOI: 10.1016/j.matdes.2009.11.039

Google Scholar

[23] P. Doležal et al., Influence of processing techniques on microstructure and mechanical properties of a biodegradable Mg-3Zn-2Ca alloy,, Materials (Basel)., 28;9(11): (2016) 880.

DOI: 10.3390/ma9110880

Google Scholar

[24] S. Lü, X. Yang, and S. Wu, Microstructure and Mechanical Properties of Rheo-squeeze Casting LPSO Structure Reinforced Mg-Zn-Y-Zr Alloys,, Tezhong Zhuzao Ji Youse Hejin/Special Cast. Nonferrous Alloy., 40(1) (2020) 1-6.

Google Scholar

[25] R. Radha and D. Sreekanth, Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications,, J. Magnes. Alloy., 8:2 (2020) 452-460.

DOI: 10.1016/j.jma.2019.05.010

Google Scholar

[26] C. H. Fan, Z. H. Chen, W. Q. He, J. H. Chen, and D. Chen, Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al-Zn-Mg-Cu alloy,, Journal of Alloys and Compounds. 504:2 (2010) L42-L45.

DOI: 10.1016/j.jallcom.2010.06.012

Google Scholar

[27] X. Fang, S. Lü, L. Zhao, J. Wang, L. Liu, and S. Wu, Microstructure and mechanical properties of a novel Mg-RE-Zn-alloy fabricated by rheo-squeeze casting,, Mater. Des., 94 (2016) 353-359.

DOI: 10.1016/j.matdes.2016.01.063

Google Scholar

[28] N. Sharma, G. Singh, P. Sharma, and A. Singla, Development of Mg-Alloy by Powder Metallurgy Method and Its Characterization,, Powder Metall. Met. Ceram., 58, (2019) 163–169.

DOI: 10.1007/s11106-019-00060-5

Google Scholar

[29] Z.R. Yang, S.Q. Wang, X.H. Cui, Y.T. Zhao, M.J. Gao, and M.X. Wei, Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system,, Sci. Technol. Adv. Mater., 9 (2008) 1468-6996.

DOI: 10.1088/1468-6996/9/3/035005

Google Scholar

[30] M. A. F. Romzi, J. Alias, and M. I. M. Ramli, Recent progress on the corrosion characterization of magnesium (Mg) prepared by powder metallurgy technique,, IOP Conf. Ser. Mater. Sci. Eng., 1068 (2021) 112004.

DOI: 10.1088/1757-899x/1068/1/012004

Google Scholar

[31] A. Kumar and P. M. Pandey, Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy,, J. Magnes. Alloy., 8:3 (2020) 883-898.

DOI: 10.1016/j.jma.2020.02.011

Google Scholar

[32] D. Annur, A. Suhardi, M. I. Amal, M. S. Anwar, and I. Kartika, Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application,, J. Phys. Conf. Ser., 817 (2017) 012062.

DOI: 10.1088/1742-6596/817/1/012062

Google Scholar

[33] Özgünn, K. Aslantaş, and A. Ercetin, Powder metallurgy mg-sn alloys: Production and characterization,, Sci. Iran., 27 (2020) 1255-1265.

Google Scholar

[34] J. Yu, J. Wang, Q. Li, J. Shang, J. Cao, and X. Sun, Effect of Zn on microstructures and properties of Mg-Zn alloys prepared by powder metallurgy method,, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 45:11 (2016) 2757-2762.

DOI: 10.1016/s1875-5372(17)30035-8

Google Scholar

[35] Z. Z. Fang et al., Powder metallurgy of titanium–past, present, and future,, Int. Mater. Rev., 63:7 (2018) 407-459.

Google Scholar

[36] H. Danninger, What will be the future of powder metallurgy?,, Powder Metall. Prog., 18:2 (2018) 70-79.

DOI: 10.1515/pmp-2018-0008

Google Scholar

[37] Q. Dong, L. Q. Chen, M. J. Zhao, and J. Bi, Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process,, Mater. Lett., 58:6 (2004) 920-926.

DOI: 10.1016/j.matlet.2003.07.037

Google Scholar

[38] C. J. Deng, M. L. Wong, M. W. Ho, P. Yu, and D. H. L. Ng, Formation of MgO and Mg-Zn intermetallics in an Mg-based composite by in situ reactions,, Compos. Part A Appl. Sci. Manuf., 36:5 (2005) 551-557.

DOI: 10.1016/j.compositesa.2004.09.001

Google Scholar

[39] T. Lei, W. Tang, S. H. Cai, F. F. Feng, and N. F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction,, Corros. Sci., 54 (2012) 270-277.

DOI: 10.1016/j.corsci.2011.09.027

Google Scholar

[40] H. Li et al., Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process,, J. Alloys Compd., 785(2019) 146-155.

DOI: 10.1016/j.jallcom.2019.01.144

Google Scholar

[41] C. Yang, H. Lü, G. Chen, and F. Liu, In situ synthesis and formation mechanism of AlN in Mg-Al alloys,, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 45:1 (2016) 18-22.

DOI: 10.1016/0142-1123(96)81879-2

Google Scholar

[42] C. Suryanarayana, Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials,, Research, 2019 (2019) 17.

DOI: 10.34133/2019/4219812

Google Scholar

[43] T. Nobuki, J. C. Crivello, F. Cuevas, and J. M. Joubert, Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties,, Int. J. Hydrogen Energy, 44:21 (2019) 10770-10776.

DOI: 10.1016/j.ijhydene.2019.02.203

Google Scholar

[44] M. B. Costa, R. Mateus, M. Guedes, and A. C. Ferro, Mechanical alloying in the Li-Sn system,, Mater. Lett. X, 6 (2020) 100045.

DOI: 10.1016/j.mlblux.2020.100045

Google Scholar

[45] A.E.A. Al-maamari, A.A. Iqbal, and D.M. Nuruzzaman, Wear and mechanical characterization of Mg–Gr self-lubricating composite fabricated by mechanical alloying,, J. Magnes. Alloy., 7:2 (2019) 283-290.

DOI: 10.1016/j.jma.2019.04.002

Google Scholar

[46] A. Yamazaki, J. Kaneko, and M. Sugamata, Mechanical alloying of magnesium and Mg-Al alloys with MnO2 and Fe2O3,, Keikinzoku/Journal Japan Inst. Light Met., 419-422 (2002) 829-836.

DOI: 10.2464/jilm.52.421

Google Scholar

[47] H. Hou, T. Zhu, Y. Wang, and W. Gao, Effect of Sn and Pb additions on microstructure of Mg-6Al-1Zn AS-cast magnesium alloys,, 27:19 (2013) 1341023.

DOI: 10.1142/s0217984913410236

Google Scholar

[48] P.S. Grant, Spray forming,, Progress in Materials Science. 39 (1995) 497-545.

Google Scholar

[49] G.S.E. Antipas, Review of gas atomisation and spray forming phenomenology,, Powder Metall., 56:4 (2013) 317-330.

DOI: 10.1179/1743290113y.0000000057

Google Scholar

[50] M. Gupta and W.L.E. Wong, Magnesium-based nanocomposites: Lightweight materials of the future,, Materials Characterization. 105 (2015) 30-46.

DOI: 10.1016/j.matchar.2015.04.015

Google Scholar

[51] J. Ann Gan and C.C. Berndt, Thermal spray forming of titanium and its alloys,, in Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann 2015 425-446.

DOI: 10.1016/b978-0-12-800054-0.00023-x

Google Scholar

[52] A. Kumar Shukla and J. Dutta Majumdar, Studies on microstructure and mechanical properties of aluminium foam prepared by Spray Forming Route,, 35 (2019) 861–865.

DOI: 10.1016/j.promfg.2019.06.032

Google Scholar

[53] T. Ebert, F. Moll, and K.U. Kainer, Spray forming of magnesium alloys and composites,, Powder Metall., 40 (1997) 126-130.

DOI: 10.1179/pom.1997.40.2.126

Google Scholar

[54] V.C. Srivastava and S.N. Ojha, Microstructure and electrical conductivity of Al-SiCp composites produced by spray forming process,, Bull. Mater. Sci.,28 (2005) 125-130.

DOI: 10.1007/bf02704231

Google Scholar