[1]
Drossel, W.-G.; et al: Unerring Planning of Clinching Processes through the Use of Mathematical Methods, KEM 611–612, 1437–1444, (2014).
DOI: 10.4028/www.scientific.net/kem.611-612.1437
Google Scholar
[2]
Jäckel, M.; et al: Gathering of Process Data through Numerical Simulation for the Application of Machine Learning Prognosis Algorithms. Procedia Manufacturing, 47, 608-614, (2020).
DOI: 10.1016/j.promfg.2020.04.186
Google Scholar
[3]
Thoms, V.; Kalich J.: Prozessvorhersage beim Stanznieten mit neuronalen Netzen, EFB-Forschungsbericht, Nr. 179, Hannover, (2002).
Google Scholar
[4]
Tassler, T.; et al: Verbesserung der Vorhersagegenauigkeit von Metamodellen. Forschung im Ingenieurwesen 81-4, 373 – 382, (2017).
DOI: 10.1007/s10010-017-0215-3
Google Scholar
[5]
Jäckel, M.; et al: Gathering of Process Data through Numerical Simulation for the Application of Machine Learning Prognosis Algorithms, Procedia Manufacturing 47: 608-614, (2020).
DOI: 10.1016/j.promfg.2020.04.186
Google Scholar
[6]
Hahn, O.; Klemens, U.: Fügen durch Umformen, Nieten und Durchsetzfügen-Innovative Verbindungsverfahren für die Praxis, Studiengesellschaft Stahlanwendung, (1996).
Google Scholar
[7]
DVS/EFB 3410: Merkblatt Stanznieten-Überblick, DVS-Verlag, Düsseldorf, (2018).
Google Scholar
[8]
Breckweg, A.: Automatisiertes und prozessüberwachtes Radialclinchen höher-fester Blechwerkstoffe. Dissertation. Stuttgart (2006).
Google Scholar
[9]
Schromm, T.; Diewald, F.; Grosse, C.: An attempt to detect anomalies in car body parts using machine learning algorithms, IEEE Transactions on Systems, Man and Cybernetics 9-1, 62–66, (2019).
Google Scholar
[10]
Lambiase, F.; Di Ilio, A.: Optimization of the Clinching Tools by Means of Integrated FE Modeling and Artificial Intelligence Techniques. Procedia CIRP 12, 163–168, (2013).
DOI: 10.1016/j.procir.2013.09.029
Google Scholar
[11]
Oh, S.; et al: Deep-Learning-Based Predictive Architectures for Self-Piercing Riveting Process, IEEE Access 8, 116254–116267, (2020).
DOI: 10.1109/access.2020.3004337
Google Scholar
[12]
Karathanasopoulos, N.; Pandya, K. S.; Mohr, D.: Self-piercing riveting process: Prediction of joint characteristics through finite element and neural network modeling. Journal of Advanced Joining Processes 3, 100040, (2021).
DOI: 10.1016/j.jajp.2020.100040
Google Scholar
[13]
Tan, Y.: Vorhersage des Tragverhaltens von Clinchverbindungen unter quasi-statischer Scherzugbelastung mittels eines neuronalen Netzes, Universität Paderborn Dissertation, (2003).
Google Scholar
[14]
Lin, J.; et al: Prediction of cross-tension strength of self-piercing rivited joints using finite element simulation and XGBoost algorithm, Chinese Journal of Mechanical Engineering 34.1, (2021).
DOI: 10.1186/s10033-021-00551-w
Google Scholar
[15]
Wanner, M.-C.; et al: Numerische und experimentelle Untersuchung von Setzprozess-unregelmäßigkeiten bei Schließringbolzensystemen, Ergebnisse eines Forschungsvorhabens der industriellen Gemeinschaftsforschung (IGF), EFB-Forschungsbericht 426, Hannover (2015).
Google Scholar
[16]
Grimm, T.; et al: Technologies for the mechanical joining of aluminum die castings, AIP Conference Proceedings, Vol. 2113, No. 1, AIP Publishing LLC, (2019).
Google Scholar
[17]
Kraus, C.; et al: Development of a new self-flaring rivet geometry using finite element method and design of experiments, Procedia Manufacturing 47, pp.383-388, (2020).
DOI: 10.1016/j.promfg.2020.04.295
Google Scholar
[18]
Raschka, S.: Python machine learning – Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics, Packt publishing ltd, (2015).
Google Scholar
[19]
Pearson, K.: On lines and planes of closest fit to systems of points in space, Philosophical Magazin 2, 559-572, (1901).
Google Scholar
[20]
Hotelling, H.: Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24 6, p.417–441, (1933).
DOI: 10.1037/h0071325
Google Scholar
[21]
Jolliffe, I.: Principal component analysis, Encyclopedia of statistics in behavioral science, (2005).
Google Scholar
[22]
Jackson, J. E.: Principal Components and Factor Analysis: Part I—Principal Components. Journal of Quality Technology 12-4, p.201–213, (1980).
DOI: 10.1080/00224065.1980.11980967
Google Scholar
[23]
Jäckel, M.; et al: Process-oriented Flow Curve Determination at Mechanical Joining, Procedia Manufacturing, Vol.47, 368-374, (2020).
DOI: 10.1016/j.promfg.2020.04.289
Google Scholar
[24]
McKay, M. D.; Beckman, R. J.; Conover, W. J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics 21 2, p.239, (1979).
DOI: 10.2307/1268522
Google Scholar
[25]
Cockroft, M. G.; Latham, D. J.: Ductility and Workability of Metals, Journal of the Institute of Metals 96, 33-39, (1968).
Google Scholar
[26]
Clarkson, J. A., & Erdös, P.: Approximation by polynomials, Duke Mathematical Journal, 10(1), 5-11, (1943).
Google Scholar