Realtime Prediction of Self-Pierce Riveting Joints - Prognosis and Visualization Based on Simulation and Machine Learning

Article Preview

Abstract:

Machine learning is used in many fields nowadays to predict events, be it a pure classification or the prediction of certain values. Thus, these methods are also increasingly used in mechanical joining technology, for example for the prediction of joint strengths, in the classification of defects and rivet head positions or in the prediction of discrete result values such as interlock. This paper further shows how the complete joint contour including the output of stresses, strains and damage can be predicted and visualized in real time for self-piercing riveting with semi-tubular rivet. First, classical sampling is carried out in experiments with steel and aluminum sheets of different types and thicknesses. These are used as a basis for the qualification of the numerical simulations. For this validation experiments and simulations are compared via joint contour and force curves. For the simulations validated in such way several tool variants are carried out in variation calculations for each material-thickness combination. The simulation meshes of the thus generated database are standardized with respect to comparability (same number of nodes) and a data reduction is performed. After testing different approximation approaches, the best possible results are predicted and can be visualized in the developed software demonstrator.

You have full access to the following eBook

Info:

Periodical:

Pages:

1479-1488

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] Drossel, W.-G.; et al: Unerring Planning of Clinching Processes through the Use of Mathematical Methods, KEM 611–612, 1437–1444, (2014).

DOI: 10.4028/www.scientific.net/kem.611-612.1437

Google Scholar

[2] Jäckel, M.; et al: Gathering of Process Data through Numerical Simulation for the Application of Machine Learning Prognosis Algorithms. Procedia Manufacturing, 47, 608-614, (2020).

DOI: 10.1016/j.promfg.2020.04.186

Google Scholar

[3] Thoms, V.; Kalich J.: Prozessvorhersage beim Stanznieten mit neuronalen Netzen, EFB-Forschungsbericht, Nr. 179, Hannover, (2002).

Google Scholar

[4] Tassler, T.; et al: Verbesserung der Vorhersagegenauigkeit von Metamodellen. Forschung im Ingenieurwesen 81-4, 373 – 382, (2017).

DOI: 10.1007/s10010-017-0215-3

Google Scholar

[5] Jäckel, M.; et al: Gathering of Process Data through Numerical Simulation for the Application of Machine Learning Prognosis Algorithms, Procedia Manufacturing 47: 608-614, (2020).

DOI: 10.1016/j.promfg.2020.04.186

Google Scholar

[6] Hahn, O.; Klemens, U.: Fügen durch Umformen, Nieten und Durchsetzfügen-Innovative Verbindungsverfahren für die Praxis, Studiengesellschaft Stahlanwendung, (1996).

Google Scholar

[7] DVS/EFB 3410: Merkblatt Stanznieten-Überblick, DVS-Verlag, Düsseldorf, (2018).

Google Scholar

[8] Breckweg, A.: Automatisiertes und prozessüberwachtes Radialclinchen höher-fester Blechwerkstoffe. Dissertation. Stuttgart (2006).

Google Scholar

[9] Schromm, T.; Diewald, F.; Grosse, C.: An attempt to detect anomalies in car body parts using machine learning algorithms, IEEE Transactions on Systems, Man and Cybernetics 9-1, 62–66, (2019).

Google Scholar

[10] Lambiase, F.; Di Ilio, A.: Optimization of the Clinching Tools by Means of Integrated FE Modeling and Artificial Intelligence Techniques. Procedia CIRP 12, 163–168, (2013).

DOI: 10.1016/j.procir.2013.09.029

Google Scholar

[11] Oh, S.; et al: Deep-Learning-Based Predictive Architectures for Self-Piercing Riveting Process, IEEE Access 8, 116254–116267, (2020).

DOI: 10.1109/access.2020.3004337

Google Scholar

[12] Karathanasopoulos, N.; Pandya, K. S.; Mohr, D.: Self-piercing riveting process: Prediction of joint characteristics through finite element and neural network modeling. Journal of Advanced Joining Processes 3, 100040, (2021).

DOI: 10.1016/j.jajp.2020.100040

Google Scholar

[13] Tan, Y.: Vorhersage des Tragverhaltens von Clinchverbindungen unter quasi-statischer Scherzugbelastung mittels eines neuronalen Netzes, Universität Paderborn Dissertation, (2003).

Google Scholar

[14] Lin, J.; et al: Prediction of cross-tension strength of self-piercing rivited joints using finite element simulation and XGBoost algorithm, Chinese Journal of Mechanical Engineering 34.1, (2021).

DOI: 10.1186/s10033-021-00551-w

Google Scholar

[15] Wanner, M.-C.; et al: Numerische und experimentelle Untersuchung von Setzprozess-unregelmäßigkeiten bei Schließringbolzensystemen, Ergebnisse eines Forschungsvorhabens der industriellen Gemeinschaftsforschung (IGF), EFB-Forschungsbericht 426, Hannover (2015).

Google Scholar

[16] Grimm, T.; et al: Technologies for the mechanical joining of aluminum die castings, AIP Conference Proceedings, Vol. 2113, No. 1, AIP Publishing LLC, (2019).

Google Scholar

[17] Kraus, C.; et al: Development of a new self-flaring rivet geometry using finite element method and design of experiments, Procedia Manufacturing 47, pp.383-388, (2020).

DOI: 10.1016/j.promfg.2020.04.295

Google Scholar

[18] Raschka, S.: Python machine learning – Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics, Packt publishing ltd, (2015).

Google Scholar

[19] Pearson, K.: On lines and planes of closest fit to systems of points in space, Philosophical Magazin 2, 559-572, (1901).

Google Scholar

[20] Hotelling, H.: Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24 6, p.417–441, (1933).

DOI: 10.1037/h0071325

Google Scholar

[21] Jolliffe, I.: Principal component analysis, Encyclopedia of statistics in behavioral science, (2005).

Google Scholar

[22] Jackson, J. E.: Principal Components and Factor Analysis: Part I—Principal Components. Journal of Quality Technology 12-4, p.201–213, (1980).

DOI: 10.1080/00224065.1980.11980967

Google Scholar

[23] Jäckel, M.; et al: Process-oriented Flow Curve Determination at Mechanical Joining, Procedia Manufacturing, Vol.47, 368-374, (2020).

DOI: 10.1016/j.promfg.2020.04.289

Google Scholar

[24] McKay, M. D.; Beckman, R. J.; Conover, W. J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics 21 2, p.239, (1979).

DOI: 10.2307/1268522

Google Scholar

[25] Cockroft, M. G.; Latham, D. J.: Ductility and Workability of Metals, Journal of the Institute of Metals 96, 33-39, (1968).

Google Scholar

[26] Clarkson, J. A., & Erdös, P.: Approximation by polynomials, Duke Mathematical Journal, 10(1), 5-11, (1943).

Google Scholar