Experimental and Numerical Investigation on Manufacturing-Induced Pre-Strain on the Load-Bearing Capacity of Clinched Joints

Article Preview

Abstract:

Background. Clinching is a conventional cold forming process in which two or more sheets can be joined without auxiliary parts. A pre-forming of the parts to be joined, which is introduced by previous manufacturing steps, has an influence on the joining result. When considering the suitability for joining with regard to the formability of the materials, the influence of the preforming steps must be taken into account. The influences of strain hardening and sheet thickness on the joining properties must be investigated. In this context, a Finite Element Method (FEM) based metamodel analysis of the clinching process was carried out in [1] to investigate the robustness of the clinching process with respect to the different material pre-strains. In [2], the method was extended to the load bearing simulation.Procedure. The metamodel from preliminary work based on various FE models, which predicts the load-bearing capacity of a clinched joint influenced by pre-straining, is compared here with experimental data and the accuracy of the metamodel prediction is discussed. For this purpose an experimental procedure was further develop which allows the preforming of metal sheets from which joining specimens can be separated with a certain degree of unidirectional deformation. In the study, the procedure for preparing the joint specimens and the results of the loading tests are presented. Different possible relevant pre-strain combinations are investigated and compared with the simulation results, to validate the FE models and choose suitable metamodel.

You have full access to the following eBook

Info:

Periodical:

Pages:

1516-1526

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] Bielak CR, Böhnke M, Beck R, Bobbert M, Meschut G: Numerical analysis of the robustness of clinching process considering the pre-forming of the parts, Laboratory for Material and Joining Technology ,University of Paderborn, Paderborn, Germany (2020),.

DOI: 10.1016/j.jajp.2020.100038

Google Scholar

[2] Bielak CR, Böhnke M, Bobbert M, Meschut G. Further development of a numerical method for analyzing the load capacity of clinched joints in versatile process chains. In: ESAFORM 2021.

DOI: 10.25518/esaform21.4298

Google Scholar

[3] DVS-EFB 3420:2021-04, Clinching – basics.

Google Scholar

[4] Hahn, O., Klemens, U.: D 707 – Fügen durch Umformen – Nieten und Durchsetzfügen – Innovative Verbindungsverfahren für die Praxis, Studiengesellschaft Stahlanwendung e.V. (1996).

Google Scholar

[5] Hahn, O.; Kruzok, J. R.: Umformtechnisches Fügen vorverformter Halbzeuge - Teil 1: Stahl, Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, Band 37, Shaker Verlag, ISBN: 978-3826543944 (1998).

Google Scholar

[6] Hahn, O.; Kurzok, J. R.: Umformtechnisches Fügen vorverformter Halbzeuge - Teil 2: Aluminium, Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, Band 38, Shaker Verlag, ISBN: 978-3826543951 (1998).

Google Scholar

[7] Wiesenmayer S, Heyser P, Nehls T, et al. Berücksichtigung der Herstellungshistorie von Blechbauteilen beim Fügen durch Umformen. Werkstattstechnik Online. 2020;110(10):677-683.

Google Scholar

[8] X. He Recent development in finite element analysis of clinched joints Int. J. Adv. Manuf. Technol., 48 (2010), pp.607-612.

DOI: 10.1007/s00170-009-2306-2

Google Scholar

[9] Jiang, T.; Liu, Z.-X.; Wang, P.-C.: Effect of aluminum pre-straining on strength of clinched galvanized SAE1004 steel-to-AA6111-T4 aluminum. Journal of Materials Processing Technology, Vol. 215, S.193-204 (2015).

DOI: 10.1016/j.jmatprotec.2014.08.016

Google Scholar

[10] J.P. Varis, J. Lepist¨O A simple testing-based procedureand simulation of the clinching process using finite element analysis for establishing clinching parameters Thin-Walled Struct., 41 (8) (2003), pp.691-709.

DOI: 10.1016/s0263-8231(03)00026-0

Google Scholar

[11] Hamel et al., 2000 V. Hamel, J.M. Roelandt, J.N. Gacel Finite element modeling of clinch forming with automatic remeshing Comput. Struct., 77 (2) (2000), pp.185-200.

DOI: 10.1016/s0045-7949(99)00207-2

Google Scholar

[12] S. Coppieters, P. Lava, S. Baes, et al. Analytical method to predict the pull-out strength of clinched connections Thin-Walled Struct., 52 (1) (2012), pp.42-52.

DOI: 10.1016/j.tws.2011.12.002

Google Scholar

[13] HCT590X, Material Data Sheet, Salzgitter Flachstahl, Salzgitter, Germany (2019).

Google Scholar

[14] DIN EN ISO 50106: Testing of Metallic Materials – Compression Test at Room Temperature, Beuth, Berlin, Germany (2016).

Google Scholar

[15] Böhnke M, Kappe F, Bobbert M, Meschut G. Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes. Materials Testing. 2021;63(6):493-500.

DOI: 10.1515/mt-2020-0082

Google Scholar

[16] DVS/EFB 3480-1 (06/2021) Prüfung von Verbindungseigenschaften - Prüfung der Eigenschaften mechanisch und kombiniert mittels Kleben gefertigter Verbindungen.

Google Scholar