[1]
A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, U. Vaidya, Materials for Automotive Lightweighting, Annu. Rev. Mater. Res. 49 (2019) 327-359.
DOI: 10.1146/annurev-matsci-070218-010134
Google Scholar
[2]
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. 280 (2000) 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[3]
J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferr. Met. Soc. China 24 (2014) 1995-2002.
Google Scholar
[4]
H. Friedrich, S. Schumann, Research for a new age of magnesium, in the automotive industry, J. Mater. Process. Technol. 117 (2001) 276-281.
Google Scholar
[5]
M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, Magnesium Alloy Applications in Automotive Structures, JOM 60 (2008) 57-62.
DOI: 10.1007/s11837-008-0150-8
Google Scholar
[6]
L. Liu, D. Ren, F. Liu, A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys, Materials 7 (2014) 3735-3757.
DOI: 10.3390/ma7053735
Google Scholar
[7]
P. Groche, S. Wohletz, M. Brenneis, C. Pabst, F. Resch, Joining by forming – A review on joint mechanisms, applications and future trends, J. Mater. Process. Technol. 214 (2014) 1972-1994.
DOI: 10.1016/j.jmatprotec.2013.12.022
Google Scholar
[8]
D. Li, A. Chrysanthou, I. Patel, G. Williams, Self-piercing riveting – a review, Int. J. Adv. Manuf. Technol. 92 (2017) 1777-1824.
DOI: 10.1007/s00170-017-0156-x
Google Scholar
[9]
A. Luo, T. Lee, J. Carter, Self-Pierce Riveting of Magnesium to Aluminum Alloys, SAE Int. J. Mater. Manuf. 4 (2011) 158-165.
DOI: 10.4271/2011-01-0074
Google Scholar
[10]
J.F.C. Moraes, J.B. Jordon, X. Su, L.N. Brewer, B.J. Fay, J.R. Bunn, L. Sochalski-Kolbus, M.E. Barkey, Residual Stresses and Plastic Deformation in Self- Pierce Riveting of Dissimilar Aluminum-to-Magnesium Alloys, SAE Int. J. Mater. Manuf. 11 (2018) 139-149.
DOI: 10.4271/05-11-02-0015
Google Scholar
[11]
J.F.C. Moraes, J.B. Jordon, X. Su, M.E. Barkey, C. Jiang, E. Ilieva, Effect of process deforma-tion history on mechanical performance of AM60B to AA6082 self-pierce riveted joints, Eng. Frac. Mech. 209 (2019) 92-104.
DOI: 10.1016/j.engfracmech.2018.12.020
Google Scholar
[12]
Y. Ma, S. Niu, H. Shan, Y. Li, N. Ma, Impact of Stack Orientation on Self-Piercing Riveted and Friction Self-Piercing Riveted Aluminum Alloy and Magnesium Alloy Joints, Automot. Innov. 3 (2020) 242-249.
DOI: 10.1007/s42154-020-00108-y
Google Scholar
[13]
F. Moroni, Fatigue behaviour of hybrid clinch-bonded and self-piercing rivet bonded joints, J. Adhes., 95 (2019) 577-594.
DOI: 10.1080/00218464.2018.1552586
Google Scholar
[14]
L. Potgorschek, J. Domitner, F. Hönsch, C. Sommitsch, S. Kaufmann, Numerical simulation of hybrid joining processes: self-piercing riveting combined with adhesive bonding, Procedia Manuf. 47 (2020) 413-418.
DOI: 10.1016/j.promfg.2020.04.322
Google Scholar
[15]
Y. Liu, L. Han, H. Zhao, X. Liu, Numerical modelling and experimental investigation of the Riv-Bonding process, J. Mater. Process. Technol. 288 (2021) 116914.
DOI: 10.1016/j.jmatprotec.2020.116914
Google Scholar
[16]
J. Domitner, P. Auer, J. Stippich, Z. Silvayeh, S. Jessernig, L. Peiser, F. Hönsch, C. Sommitsch, Riv-bonding of aluminum alloys with high-strength steels against the favorable joining direction, J. Mater. Eng. Perform., 31 (2022) accepted for publication.
DOI: 10.1007/s11665-022-06647-1
Google Scholar