[1]
W. Böhme, M. Luke, Blauel J. G., S. Dong-Zhi, I. Rohr, W. Harwick, Dynamic material characteristics for crash simulation (Dynamische Werkstoffkennwerte für die Crashsimulation), FAT- Publications (2007).
DOI: 10.3139/120.100865
Google Scholar
[2]
E. Macherauch, O. Vöhringer, The Deformation Behaviour of Metallic Materials Under Mechanical Loading, Mat.-wiss. u. Werkstofftech. 9 (1978) 370–391.
Google Scholar
[3]
Stahlinstitut VDEh – Unterausschuss Prüftechnik, The Determination of the Mechanical Properties of Sheet Metal at High Strain Rates in High-Speed Tensile Tests (2006).
Google Scholar
[4]
J.D. Helm, S.R. McNeill, M.A. Sutton, Improved three‐dimensional image correlation for surface displacement measurement, Opt. Eng 35 (1996) 1911–(1920).
DOI: 10.1117/1.600624
Google Scholar
[5]
Z.L. Kahn-Jetter, T.C. Chu, Three-dimensional displacement measurements using digital image correlation and photogrammic analysis, Exp Mech 30 (1990) 10–16.
DOI: 10.1007/bf02322695
Google Scholar
[6]
GOM GmbH, Digital Image Correlation and Strain Computation Basics: Technical White Paper (2018).
Google Scholar
[7]
B. Wattrisse, A. Chrysochoos, J.-M. Muracciole, M. Némoz-Gaillard, Analysis of strain localization during tensile tests by digital image correlation, Exp Mech 41 (2001) 29–39.
DOI: 10.1007/bf02323101
Google Scholar
[8]
S. Hartmann, S. Rodriguez, Verification Examples for Strain and Strain-Rate Determination of Digital Image Correlation Systems, in: H. Altenbach, F. Jablonski, W.H. Müller, K. Naumenko, P. Schneider (Eds.), Advances in mechanics of materials and structural analysis: In honor of Reinhold Kienzler, 1. Aufl., Springer-Verlag, s.l., 2018, p.135–174.
DOI: 10.1007/978-3-319-70563-7_7
Google Scholar
[9]
V. Tiwari, M.A. Sutton, S.R. McNeill, Assessment of High Speed Imaging Systems for 2D and 3D Deformation Measurements: Methodology Development and Validation, Exp Mech 47 (2007) 561–579.
DOI: 10.1007/s11340-006-9011-y
Google Scholar
[10]
J. Kajberg, K.G. Sundin, L.G. Melin, P. Ståhle, High strain-rate tensile testing and viscoplastic parameter identification using microscopic high-speed photography, International Journal of Plasticity 20 (2004) 561–575.
DOI: 10.1016/s0749-6419(03)00041-x
Google Scholar
[11]
V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, F. Hild, A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis, International Journal of Solids and Structures 45 (2008) 601–619.
DOI: 10.1016/j.ijsolstr.2007.08.021
Google Scholar
[12]
J.D. Seidt, V.-T. Kuokkala, J.L. Smith, A. Gilat, Synchronous Full-Field Strain and Temperature Measurement in Tensile Tests at Low, Intermediate and High Strain Rates, Exp Mech 57 (2017) 219–229.
DOI: 10.1007/s11340-016-0237-z
Google Scholar
[13]
A. Gilat, T.E. Schmidt, A.L. Walker, Full Field Strain Measurement in Compression and Tensile Split Hopkinson Bar Experiments, Exp Mech 49 (2009) 291–302.
DOI: 10.1007/s11340-008-9157-x
Google Scholar
[14]
N. N.:, HCT590X, Material Data Sheet: Salzgitter Flachstahl, Salzgitter, Germany, (2019).
Google Scholar
[15]
N. N.:, EN AW-6014 T4, Material Data Sheet Novelis Advanz™ 6F – e170, Atlanta, Georgia, USA, (2019).
Google Scholar
[16]
N. N., SGD-3/120-LY41; Precision Strain Gage Precision linear pattern for Static and Dynamic Applications: OMEGA Engineering.
Google Scholar
[17]
A. Savitzky, M.J.E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem. 36 (1964) 1627–1639.
DOI: 10.1021/ac60214a047
Google Scholar
[18]
E. Ostertagová, O. Ostertag, Methodology and Application of Savitzky-Golay Moving Average Polynomial Smoother, Global Journal of Pure and Applied Mathematics 12 (2016) 3201–3210.
Google Scholar