[1]
T. Koyano, A. Hosokawa, T. Takahashi, T. Ueda, One-process surface texturing of a large area by electrochemical machining with short voltage pulses, CIRP Annals 68(1) (2019) 181-184.
DOI: 10.1016/j.cirp.2019.04.100
Google Scholar
[2]
S. Amini, H.N. Hosseinabadi, S.A. Sajjady, Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance, Appl. Surf. Sci. 390 (2016) 633-648.
DOI: 10.1016/j.apsusc.2016.07.064
Google Scholar
[3]
H.N. Hosseinabadi, S.A. Sajjady, S. Amini, Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning, Int. J Adv. Manuf. Technol. 96 (2018).
DOI: 10.1007/s00170-018-1580-2
Google Scholar
[4]
R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, Ultrasonic Vibration Turning to Increase the Deposition Efficiency of a silica-based Sol-Gel Coating, Procedia Manuf. 34 (2019) 101-109.
DOI: 10.1016/j.promfg.2019.06.126
Google Scholar
[5]
X. Liu, D. Wu, J. Zhang, X. Hu, P. Cui, Analysis of surface texturing in radial ultrasonic vibration-assisted turning, J Mater Process Technol. 267 (2019) 186-195.
DOI: 10.1016/j.jmatprotec.2018.12.021
Google Scholar
[6]
S. Amini, H.N. Hosseinabadi, S.A. Sajjady, Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance, Appl. Surf. Sci. 390 (2016) 633-648.
DOI: 10.1016/j.apsusc.2016.07.064
Google Scholar
[7]
X. Liu, J. Zhang, X. Hu, W. Wu, Influence of tool material and geometry on micro-textured surface in radial ultrasonic vibration-assisted turning,Int J Mech. Sci. 152 (2019) 545-557.
DOI: 10.1016/j.ijmecsci.2019.01.027
Google Scholar
[8]
A. Ghiotti, R. Bertolini, L. Pezzato, E. Savio, M. Terzini, S. Bruschi, Surface texturing to enhance sol-gel coating performances for biomedical applications, CIRP Annals. 70 (2021) 459-62.
DOI: 10.1016/j.cirp.2021.04.040
Google Scholar
[9]
D. Gastaldi, V. Sassi, L. Petrini, M. Vedani, S. Trasatti, F. Migliavacca, Continuum damage model for bioresorbable magnesium alloy devices-Application to coronary stents, J. Mech. Behav Biomed Mater. 4(3) (2011) 352-365.
DOI: 10.1016/j.jmbbm.2010.11.003
Google Scholar
[10]
C.N. Elias, D.J. Fernandes, F.M. de Souza, E. dos Santos Monteiro, R.S. de Biasi, Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications, JMater Res Technol. 8(1) (2019) 1060-1069.
DOI: 10.1016/j.jmrt.2018.07.016
Google Scholar
[11]
I.O. Tugay, A. Hosseinzadeh, G.G. Yapici, Hardness and wear resistance of roller burnished 316L stainless steel, Mater Today: Proceedings. 47(2) (2021).
DOI: 10.1016/j.matpr.2021.04.363
Google Scholar
[12]
E. Di Iorio, R. Bertolini, S. Bruschi, A. Ghiotti, Design and development of an ultrasonic vibration assisted turning system for machining bioabsorbable magnesium alloys, Procedia CIRP. 77 (2018) 324-327.
DOI: 10.1016/j.procir.2018.09.026
Google Scholar
[13]
A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani, Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy, Wear. 328 (2015) 89-99.
DOI: 10.1016/j.wear.2015.01.030
Google Scholar