[1]
K. M. Budinski, J. C. PulverJayson, J. N. Eugene. G. Hill, D. A. Richards, Glass mold material for precision glass molding. US-Patent with US6363747B1 (2001).
Google Scholar
[2]
Q. Yu, T. Zhou, Y. He, P. Liu, X. Wang, Y. Jiang, J. Yan, Annealed high-phosphorous electroless Ni-P coatings for producing molds for precision glass molding. Mater. Chem. Phys. 262 (32) (2021) 124297.
DOI: 10.1016/j.matchemphys.2021.124297
Google Scholar
[3]
K. Saito, Introduction to ion nitriding in Hokunetsu. (2018). http://hokunetsu.com/ products/003/ (retrieved at 2021/11/16).
Google Scholar
[4]
H. Aghajani, S. Behrangi, Pulsed DC glow discharge plasma nitriding. In: Plasma Nitriding of Steels, Springer (2016) 71-125.
DOI: 10.1007/978-3-319-43068-3_3
Google Scholar
[5]
T. Bell, Surface engineering of austenitic stainless steel. Surf. Eng. 18 (2002) 415-422.
Google Scholar
[6]
H. Dong, S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. International Materials Reviews. 55(2) (2011) 65-98.
DOI: 10.1179/095066009x12572530170589
Google Scholar
[7]
T. Aizawa, Low temperature plasma nitriding of austenitic stainless steels. Ch. 3 In: Stainless Steels. IntechOpen, London, UK (2018) 31-50.
DOI: 10.5772/intechopen.78365
Google Scholar
[8]
Lu S.; Zhao X., Wang S., Li J., Wei W., Hu J., Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless steel. Vacuum. 2017; 145: pp.334-339.
DOI: 10.1016/j.vacuum.2017.09.020
Google Scholar
[9]
T. Aizawa, T. Shiratori, T. Komatsu, Micro-/nano-structuring in stainless steels by metal forming and materials processing. Ch. 5 In: Electron Crystallography. IntechOpen, London, UK (2020) 101-122.
DOI: 10.5772/intechopen.91281
Google Scholar
[10]
F. Borgioli, E. Galvanetto, T. Bacco, Low temperature nitriding of AISI300 and 200 series austenitic stainless steels. Vacuum 12 (2016) 51–60.
DOI: 10.1016/j.vacuum.2016.02.009
Google Scholar
[11]
A. Farghali, T. Aizawa, T. Yoshino, Microstructure/mechanical characterization of plasma nitrided fine-grain austenitic stainless steels in low temperature. J. Nitrogen 2 (2021) 244-258.
DOI: 10.3390/nitrogen2020016
Google Scholar
[12]
T. Katoh, T. Aizawa, T. Yamaguchi: Plasma assisted nitriding for micro-texturing onto martensitic stainless steels. Manufacturing Review 2 (2) (2015) 1-7.
DOI: 10.1051/mfreview/2015004
Google Scholar
[13]
D. J. Djoko, T. Aizawa, Formation of expanded martensite in plasma nitrided AISI420 stainless steel. Pro. 8th SEATUC Conf. (Johor-Balu, Malaysia; March 2014) (CD-ROM).
Google Scholar
[14]
A. Farghali, T. Aizawa, Nitrogen supersaturation process in the AISI420 martensitic stainless steels by low temperature plasma nitriding. ISIJ International. 58 (3) (2018) 401-407.
DOI: 10.2355/isijinternational.isijint-2017-451
Google Scholar
[15]
T. Aizawa, T. Fukuda, Microstructure and micro-machinability of plasma nitrided AISI420 martensitic stainless steels at 673 K. Top-5 Cont. to Mater. Sci. 6th Ed. Avid Science (2019) 2-23.
Google Scholar
[16]
T. Aizawa, H. Morita, T. Fukuda, High machinability of plasma-nitrided HPM80 dies at 673K by PCD-tools for hot mold-stamping. Procedia Manufacturing 47 (2020) 725-731.
DOI: 10.1016/j.promfg.2020.04.223
Google Scholar
[17]
T. Aizawa, I, Rsadi, E. E. Yunata, High density RF-DC plasma nitriding under optimized conditions by plasma-diagnosis. J. Appl. Sci. (2021) (in press).
DOI: 10.3390/app12083706
Google Scholar
[18]
C. Domain, C. S. Becquart, J. Foct, Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in a-Fe. Phys. Rev. B 69 (2004) 144122.
DOI: 10.1103/physrevb.69.144112
Google Scholar
[19]
T. Aizawa, T. Shiratori, T. Yoshino, Y. Suzuki, T. Komatsu, Nitrogen supersaturation of AISI316/316L/316LN stainless steels at 673 K for hardening and microstructure control. Ch. In: Stainless Steels, InTechOpen, London, UK (2021) (in press).
DOI: 10.5772/intechopen.102387
Google Scholar
[20]
Y. Hiraoka, K. Inoue, Prediction of nitrogen distribution in steels after plasma nitriding. Denki-Seiko 86 (2010) 15-24.
Google Scholar
[21]
T. Aizawa, S-I. Yoshihara, Inner nitriding behavior and mechanism in stainless steels at 753 K and 623 K. SEATUC J. Sc. Eng. (SJSE) 1 (2019) 13-20.
Google Scholar
[22]
T. Aizawa, T. Yoshino, K. Morikawa, S-I. Yoshihara, Microstructure of plasma nitrided AISI420 martensitic stainless steel at 673 K. J. crystals 9 (2), 60 (2019) 1 - 10.
DOI: 10.3390/cryst9020060
Google Scholar
[23]
Y. Imai, T. Murata, M. Sakamoto, High nitrogen steels. (2005) Agune.
Google Scholar
[24]
B. R. Lawn, O. Borrero-Lopez, H. Huang, Y. Zhang, Micromechanics of machining and wear in hard and brittle materials. J. Amcer. Soc. 104 (1) (2021) 5-22.
DOI: 10.1111/jace.17502
Google Scholar
[25]
P. Parhad, A. Likhite, J. Bhatt, D. Peshwe, The effect of cutting speed and depth of cut on surface roughness during machining of austempered ductile iron. Trans. Indian Institute Metals. 68 (2015) 99-108.
DOI: 10.1007/s12666-014-0439-y
Google Scholar