Analysis of Machine-Sided Influences during Clinching

Article Preview

Abstract:

Mechanical joining techniques like clinching are standard joining techniques for processing aluminum and steel alloys in the automotive car body manufacturing. When using conventional methods, joints will have a high quality after a finally tool check on a specific joining press system. However, if the press system during manufacturing will changed, it can occur that joints get other quality values e.g. smaller interlock. The reason for that has multiple influences,this paper considers especially the press-sided ones. With optical measurements of press deformation and punch speed during real joining processes, new 3D-halfsymmetric simulation models were built up, which take into account of press-side behavior such as joining velocity and angular as well as lateral misalignment of the joining tools during clinching process. Sensitivity analyses identifies significant influencing variables. On the base of this, equations of quality changes can be determined. Finally, this allows better prediction of the modification about joint quality after a press change from system A to B or C during manufacturing.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] DVS/EFB Gemeinschaftsausschuss Mechanisches Fügen,: Merkblatt DVS/EFB 3490 Anlagen zum Stanznieten, Hannover (2015).

Google Scholar

[2] DVS/EFB Gemeinschaftsausschuss Mechanisches Fügen,: Merkblatt DVS/EFB 3420 Clinchen, Düsseldorf (2021).

Google Scholar

[3] Voelkner, W. u. Hahn, O.: Fügen von Feinblechen mittels Durchsetzfügen-Kleben und Stanznieten-Kleben. Ergebnisse eines Vorhabens der industriellen Gemeinschaftsforschung (IGF). EFB-Forschungsbericht, Nr. 102. Hannover: EFB (1997).

Google Scholar

[4] Drossel, W.-G. u. Israel, M.: Sensitivitätsanalyse und Robustheitsbewertung beim mechanischen Fügen. Ergebnisse eines Vorhabens der industriellen Gemeinschaftsforschung (IGF). EFB-Forschungsbericht, Nr. 376. Hannover: EFB (2013).

Google Scholar

[5] Abe, Y., Nihsino, S., Mori, K.-i. u. Saito, T.: Improvement of Joinability in Mechanical Clinching of Ultra-high Strength Steel Sheets Using Counter Pressure with Ring Rubber. Procedia Engineering 81, S. 2056–2061, (2014).

DOI: 10.1016/j.proeng.2014.10.285

Google Scholar

[6] Lambiase, F.: Influence of process parameters in mechanical clinching with extensible dies. The International Journal of Advanced Manufacturing Technology 66 9-12, S. 2123–2131, (2013).

DOI: 10.1007/s00170-012-4486-4

Google Scholar

[7] Lee, C.-J., Kim, J.-Y., Lee, S.-K., Ko, D.-C. u. Kim, B.-M.: Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets. Journal of Mechanical Science and Technology 24 1, S. 123–126, (2010).

DOI: 10.1007/s12206-009-1118-5

Google Scholar

[8] Abe, Y., Ishihata, S., Maeda, T. u. Mori, K.-i.: Mechanical clinching process using preforming of lower sheet for improvement of joinability. Procedia Manufacturing 15, S. 1360–1367, (2018).

DOI: 10.1016/j.promfg.2018.07.347

Google Scholar

[9] Tassler, T., Israel, M., Goede, M.-F., Dilger, K. u. Dröder, K.: Verbesserung der Vorhersagegenauigkeit von Metamodellen. Forschung im Ingenieurwesen 81 4, S. 373–382, (2017).

DOI: 10.1007/s10010-017-0215-3

Google Scholar

[10] Wang, M.-h., Xiao, G.-q., Li, Z. u. Wang, J.-q.: Shape optimization methodology of clinching tools based on Bezier curve. The International Journal of Advanced Manufacturing Technology 94 5-8, S. 2267–2280, (2018).

DOI: 10.1007/s00170-017-0987-5

Google Scholar

[11] Oudjene, M. u. Ben-Ayed, L.: On the parametrical study of clinch joining of metallic sheets using the Taguchi method. Engineering Structures 30 6, S. 1782–1788, (2008).

DOI: 10.1016/j.engstruct.2007.10.017

Google Scholar

[12] Chen, C., Zhang, H., Peng, H. u. Ran, X.: Influence of clinching steps and sheet thickness on the mechanical properties of the clinching joint. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 235 12, S. 2015–2024, (2021).

DOI: 10.1177/09544054211001008

Google Scholar

[13] Qin, D., Chen, C., Ouyang, Y., Wu, J. u. Zhang, H.: Finite element methods used in clinching process. The International Journal of Advanced Manufacturing Technology 116 9-10, S. 2737–2776, (2021).

DOI: 10.1007/s00170-021-07602-5

Google Scholar

[14] Mutschler, J.: Sicherung der Erzeugnisqualität in der Durchsetzfügetechnik insbesondere bei Einsatz flexibler Fertigungseinrichtungen. Dissertation. Hamburg (1994).

Google Scholar

[15] Richter, A.: Möglichkeiten und Grenzen der Prozeßüberwachung zur Qualitätssicherung beim Fügen durch Umformen. Dissertation. Technische Universität Hamburg-Harburg (1997).

Google Scholar

[16] Khrebtov, P.: Neuartiges Verfahren zur Online-Prozessüberwachung und -Fehlerklassifizierung beim Durchsetzverbinden von Blechen. Dissertation. Clausthal (2011).

Google Scholar

[17] Varis, J.: Ensuring the integrity in clinching process. Journal of Materials Processing Technology 174 1-3, S. 277–285, (2006).

DOI: 10.1016/j.jmatprotec.2006.02.001

Google Scholar

[18] Wang, C. C., Kam, H. K. u. Cheong, W. C.: Effect of Tool Eccentricity on the Joint Strength in Mechanical Clinching Process. Procedia Engineering 81, S. 2062–2067, (2014).

DOI: 10.1016/j.proeng.2014.10.286

Google Scholar

[19] Witowski, W.: Clinching joint forming speed impact on the joints strength. In: Mechanika 86 (2014) 4, S. 651–657.

DOI: 10.7862/rm.2014.67

Google Scholar

[20] Eckold GmbH & Co. KG: ECKOLD Hit Clinchen. http://www.eckold.cz/data/blob/catalog-application_pdf-20100914110346-4295-hcm1000.pdf.

Google Scholar

[21] Universität Paderborn, Laboratorium für Werkstoff- und Fügetechnik: Umformtechnisches Fügen mit hoher Fügeelementgeschwindigkeit und impulsförmig oszillierender Werkzeugbewegung. BMBF Verbundprojekt dynamisches Fügen. (2003).

Google Scholar

[22] Thoms, V., Kalich, J. u. Westkämpfer, E., et al.: Entwicklung von Verfahren und Einrichtungen zum Radialclinchen. Ergebnisse eines Vorhabens der industriellen Gemeinschaftsforschung (IGF). EFB-Forschungsbericht, Nr. 197. Hannover: EFB (2003).

Google Scholar

[23] Wang, X., Li, X., Shen, Z., Ma, Y. u. Liu, H.: Finite element simulation on investigations, modeling, and multiobjective optimization for clinch joining process design accounting for process parameters and design constraints. The International Journal of Advanced Manufacturing Technology 82 1, S. 179, (2018).

DOI: 10.1007/s00170-018-1708-4

Google Scholar

[24] Babalo, V., Fazli, A. u. Soltanpour, M.: Electro-Hydraulic Clinching: A novel high speed joining process. Journal of Manufacturing Processes 35, S. 559–569, (2018).

DOI: 10.1016/j.jmapro.2018.09.006

Google Scholar