Enabling Sustainability in Glass Optics Manufacturing by Wafer Scale Molding

Article Preview

Abstract:

Numerous optical applications have rising demands for ever increasing quantities from lighting and projection optics for modern vehicles to home or street lighting using LED technology. Glass is the material of choice for most of those application fields. It has several advantages over polymers, including heat and scratch resistance as well as longevity and recyclability. Non-isothermal glass molding has become a viable hot forming technology for mass production of optics. The major challenge is enabling a scalable replication process allowing the optical glass elements to be manufactured with high form accuracy and at low-cost production with low reject rates. This work introduces recent developments in glass optics manufacturing that allow the fulfilment of seemingly contradicting criteria: the economic growth and the need for less consumption of resources and energy. While single cavity non-isothermal molding is state-of-the-art, a manufacturing innovation through wafer-scale molding enables an exponentially increasing number of optics to be produced per production shift, allowing a significant reduction of unit costs. In parallel, as multiple optics are produced in one manufacturing cycle, the energy consumption and the consequent CO2 emission can be reduced. In contrast, the technological development arises several challenges that will be discussed in this work. Besides the selection of suitable mold concepts and materials, the challenges also include the temperature control of the mold and the blank up to the optimization of flow and shrinking mechanisms of the glass during rapid forming. Another difficulty in the non-isothermal glass molding is to maintain the low form deviation required for precision optics, repeatability, and low failure rates through process optimization. Finally, detail calculations of cost, energy and CO2 consumption, in comparison with conventional fabrication of glass components using grinding and polishing as well as single cavity molding, will be demonstrated. The non-isothermal wafer-level glass molding is a new technological solution for the sustainable manufacturing of optics at large-scaled production.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] P.-A. Vogel, C. Strobl, H. Mende, Verbundvorhaben: EFFEkT - Energie- und ressourceneffiziente Prozesskette zur Fertigung komplexer Glasoptiken Teilvorhaben: Entwicklung eines Blankpressprozesses Final Report Berichtszeitraum: 01.12.2015-30.11.2019 (2020).

Google Scholar

[2] Grand View Research, LED Lighting Market Size, Share & Trends Analysis Report By End-use (Residential, Commercial), By Product (Lamps, Luminaires), By Application (Indoor, Outdoor), By Region, And Segment Forecasts, 2021 - 2028, 2021. https://www.grandviewresearch.com/industry-analysis/led-lighting-market (accessed 6 December 2021).

Google Scholar

[3] A.-T. Vu, H. Kreilkamp, O. Dambon, F. Klocke, Nonisothermal glass molding for the cost-efficient production of precision freeform optics, Opt. Eng 55 (2016) 71207. https://doi.org/10.1117/1.OE.55.7.071207.

DOI: 10.1117/1.oe.55.7.071207

Google Scholar

[4] T. Grunwald, Modellierung des Werkzeugverschleißes bei der Quarzglasumformung, first ed., Apprimus Wissenschaftsverlag, Aachen, (2021).

Google Scholar

[5] D. Hollstegge, Process-induced changes in optical properties of precision molded glass lenses. Dissertation, first edition, (2016).

Google Scholar

[6] H. Kreilkamp, Analyse der Einflüsse auf die Gestaltabweichung gepresster Glasoptiken beim nicht-isothermen Blankpressen. Dissertation, first edition, (2018).

Google Scholar

[7] J. Bliedtner, G. Gräfe, Optiktechnologie: Grundlagen - Verfahren - Anwendungen - Beispiele, second., aktualisierte Auflage, Hanser, München, (2010).

DOI: 10.3139/9783446424661

Google Scholar

[8] A.T. Vu, H. Kreilkamp, L. Gang, O. Dambon, F. Klocke, Numerical modeling-based design of the newly developed nonisothermal glass molding process for complex glass optics, in: Glass Service (Ed.), 13th International Seminar on Furnace Design – Operation & Process Simulation, Czech Republic, 2015, p.376–390.

DOI: 10.1117/1.oe.55.7.071207

Google Scholar

[9] A.T. Vu, H. Kreilkamp, B.J. Krishnamoorthi, O. Dambon, F. Klocke, A hybrid optimization approach in non-isothermal glass molding, AIP Conference Proceedings Vol. 1769 (2016) 40001–40006. https://doi.org/10.1063/1.4963428.

DOI: 10.1063/1.4963428

Google Scholar

[10] H. Kreilkamp, A.T. Vu, O. Dambon, F. Klocke, Replicative manufacturing of complex lighting optics by non-isothermal glass molding, in: Polymer Optics and Molded Glass Optics: Design, Fabrication, and Materials 2016, San Diego, California, United States, SPIE, 2016, 99490B.

DOI: 10.1117/12.2235848

Google Scholar

[11] H. Kreilkamp, A.T. Vu, O. Dambon, N.F. Klocke, Non-isothermal glass moulding of complex LED optics, in: S.K. Sundaram (Ed.), 77th Conference on Glass Problems, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2017, p.141–149.

DOI: 10.1002/9781119417507.ch13

Google Scholar

[12] T. Grunwald, O. Dambon, F. Klocke, Warmumformung von Präzisionsoptiken, in: Jahrbuch Optik und Feinmechanik.

Google Scholar

[13] G. Liu, J.-H. Staasmeyer, O. Dambon, T. Grunwald, Scalability of the precision glass molding process for an efficient optics production, in: Optical Manufacturing and Testing XII, San Diego, United States, SPIE, 19.08.2018 - 23.08.2018, p.17.

DOI: 10.1117/12.2321103

Google Scholar

[14] H. Kreilkamp, A.T. Vu, O. Dambon, Establishment of an integrated process chain for the cost-efficient manufacturing complex glass optics. Grant Agreement No.: FP7-SME-2013-606105, CENTiMO, Final Report, (2015).

Google Scholar

[15] G. Liu, A.-T. Vu, O. Dambon, F. Klocke, Glass Material Modeling and its Molding Behavior, MRS Advances 2 (2017) 875–885. https://doi.org/10.1557/adv.2017.64.

DOI: 10.1557/adv.2017.64

Google Scholar

[16] T.D. Pallicity, A.-T. Vu, K. Ramesh, P. Mahajan, G. Liu, O. Dambon, Birefringence measurement for validation of simulation of precision glass molding process, J American Ceramic Society 100 (2017) 4680–4698. https://doi.org/10.1111/jace.15010.

DOI: 10.1111/jace.15010

Google Scholar

[17] A.T. Vu, P.-A. Vogel, O. Dambon, F. Klocke, Vacuum-assisted precision molding of 3D thin microstructure glass optics, in: Fiber Lasers and Glass Photonics: Materials through Applications, Strasbourg, France, SPIE, 22.-26.04.2018, p.1–21.

DOI: 10.1117/12.2307060

Google Scholar

[18] A.T. Vu, A.N. Vu, T. Grunwald, T. Bergs, Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding, J American Ceramic Society 103 (2020) 2791–2807. https://doi.org/10.1111/jace.16963.

DOI: 10.1111/jace.16963

Google Scholar

[19] A.T. Vu, A.N. Vu, G. Liu, T. Grunwald, O. Dambon, F. Klocke, T. Bergs, Experimental investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared thermography, J American Ceramic Society 102 (2019) 2116–2134. https://doi.org/10.1111/jace.16029.

DOI: 10.1111/jace.16029

Google Scholar

[20] A.T. Vu, T. Helmig, A.N. Vu, Y. Frekers, T. Grunwald, R. Kneer, T. Bergs, Numerical and experimental determinations of contact heat transfer coefficients in nonisothermal glass molding, J American Ceramic Society 103 (2020) 1258–1269. https://doi.org/10.1111/jace.16756.

DOI: 10.1111/jace.16756

Google Scholar

[21] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Machine learning-based predictive modeling of contact heat transfer, International Journal of Heat and Mass Transfer 174 (2021) 121300. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121300.

DOI: 10.1016/j.ijheatmasstransfer.2021.121300

Google Scholar

[22] J.-H. Staasmeyer, G. Liu, M. Friedrichs, Skalierbare Abformung von Linsen für IR-Anwendungen (2017).

Google Scholar

[23] A.T. Vu, T. Grunwald, T. Bergs, Thermo-viscoelastic Modeling of Nonequilibrium Material Behavior of Glass in Nonisothermal Glass Molding, Procedia Manufacturing 47 (2020) 1561–1568. https://doi.org/10.1016/j.promfg.2020.04.350.

DOI: 10.1016/j.promfg.2020.04.350

Google Scholar

[24] G. Liu, Modeling Fracture Behavior in Precision Glass Molding, first edition, Apprimus Wissenschaftsverlag, Aachen, (2018).

Google Scholar

[25] P.-A. Vogel, A.T. Vu, H. Mende, T. Grunwald, T. Bergs, R.H. Schmitt, Approaches and methodologies for process development of thin glass forming, in: Optifab 2019, Rochester, United States, SPIE, 14.-17.10.2019, p.68.

DOI: 10.1117/12.2536431

Google Scholar

[26] F. Klocke, Y. Wang, D. Hollstegge, F. Wang, G. Liu, Precision glass molding of wafer lens optics, in: Proceedings of the 12th International Conference of the European Society for Precision Engineering and Nanotechnology: June 4th - 7th [8th] 2012, Stockholm, Sweden, Euspen, Bedford, 2012, p.181–184.

Google Scholar

[27] H. Mende, P.-A. Vogel, M. Padrón Hinrichs, R.H. Schmitt, Industrie 4.0 in praxisnaher Anwendung*: Vom Retrofit über Datenspeicherung zum maschinellen Lernen am Beispiel der Glasumformung, wt-online 2019 (2019) 779–784.

DOI: 10.37544/1436-4980-2019-10-83

Google Scholar

[28] R.B. Tan, H.H. Khoo, An LCA study of a primary aluminum supply chain, Journal of Cleaner Production 13 (2005) 607–618. https://doi.org/10.1016/j.jclepro.2003.12.022.

DOI: 10.1016/j.jclepro.2003.12.022

Google Scholar