[1]
P.-A. Vogel, C. Strobl, H. Mende, Verbundvorhaben: EFFEkT - Energie- und ressourceneffiziente Prozesskette zur Fertigung komplexer Glasoptiken Teilvorhaben: Entwicklung eines Blankpressprozesses Final Report Berichtszeitraum: 01.12.2015-30.11.2019 (2020).
Google Scholar
[2]
Grand View Research, LED Lighting Market Size, Share & Trends Analysis Report By End-use (Residential, Commercial), By Product (Lamps, Luminaires), By Application (Indoor, Outdoor), By Region, And Segment Forecasts, 2021 - 2028, 2021. https://www.grandviewresearch.com/industry-analysis/led-lighting-market (accessed 6 December 2021).
Google Scholar
[3]
A.-T. Vu, H. Kreilkamp, O. Dambon, F. Klocke, Nonisothermal glass molding for the cost-efficient production of precision freeform optics, Opt. Eng 55 (2016) 71207. https://doi.org/10.1117/1.OE.55.7.071207.
DOI: 10.1117/1.oe.55.7.071207
Google Scholar
[4]
T. Grunwald, Modellierung des Werkzeugverschleißes bei der Quarzglasumformung, first ed., Apprimus Wissenschaftsverlag, Aachen, (2021).
Google Scholar
[5]
D. Hollstegge, Process-induced changes in optical properties of precision molded glass lenses. Dissertation, first edition, (2016).
Google Scholar
[6]
H. Kreilkamp, Analyse der Einflüsse auf die Gestaltabweichung gepresster Glasoptiken beim nicht-isothermen Blankpressen. Dissertation, first edition, (2018).
Google Scholar
[7]
J. Bliedtner, G. Gräfe, Optiktechnologie: Grundlagen - Verfahren - Anwendungen - Beispiele, second., aktualisierte Auflage, Hanser, München, (2010).
DOI: 10.3139/9783446424661
Google Scholar
[8]
A.T. Vu, H. Kreilkamp, L. Gang, O. Dambon, F. Klocke, Numerical modeling-based design of the newly developed nonisothermal glass molding process for complex glass optics, in: Glass Service (Ed.), 13th International Seminar on Furnace Design – Operation & Process Simulation, Czech Republic, 2015, p.376–390.
DOI: 10.1117/1.oe.55.7.071207
Google Scholar
[9]
A.T. Vu, H. Kreilkamp, B.J. Krishnamoorthi, O. Dambon, F. Klocke, A hybrid optimization approach in non-isothermal glass molding, AIP Conference Proceedings Vol. 1769 (2016) 40001–40006. https://doi.org/10.1063/1.4963428.
DOI: 10.1063/1.4963428
Google Scholar
[10]
H. Kreilkamp, A.T. Vu, O. Dambon, F. Klocke, Replicative manufacturing of complex lighting optics by non-isothermal glass molding, in: Polymer Optics and Molded Glass Optics: Design, Fabrication, and Materials 2016, San Diego, California, United States, SPIE, 2016, 99490B.
DOI: 10.1117/12.2235848
Google Scholar
[11]
H. Kreilkamp, A.T. Vu, O. Dambon, N.F. Klocke, Non-isothermal glass moulding of complex LED optics, in: S.K. Sundaram (Ed.), 77th Conference on Glass Problems, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2017, p.141–149.
DOI: 10.1002/9781119417507.ch13
Google Scholar
[12]
T. Grunwald, O. Dambon, F. Klocke, Warmumformung von Präzisionsoptiken, in: Jahrbuch Optik und Feinmechanik.
Google Scholar
[13]
G. Liu, J.-H. Staasmeyer, O. Dambon, T. Grunwald, Scalability of the precision glass molding process for an efficient optics production, in: Optical Manufacturing and Testing XII, San Diego, United States, SPIE, 19.08.2018 - 23.08.2018, p.17.
DOI: 10.1117/12.2321103
Google Scholar
[14]
H. Kreilkamp, A.T. Vu, O. Dambon, Establishment of an integrated process chain for the cost-efficient manufacturing complex glass optics. Grant Agreement No.: FP7-SME-2013-606105, CENTiMO, Final Report, (2015).
Google Scholar
[15]
G. Liu, A.-T. Vu, O. Dambon, F. Klocke, Glass Material Modeling and its Molding Behavior, MRS Advances 2 (2017) 875–885. https://doi.org/10.1557/adv.2017.64.
DOI: 10.1557/adv.2017.64
Google Scholar
[16]
T.D. Pallicity, A.-T. Vu, K. Ramesh, P. Mahajan, G. Liu, O. Dambon, Birefringence measurement for validation of simulation of precision glass molding process, J American Ceramic Society 100 (2017) 4680–4698. https://doi.org/10.1111/jace.15010.
DOI: 10.1111/jace.15010
Google Scholar
[17]
A.T. Vu, P.-A. Vogel, O. Dambon, F. Klocke, Vacuum-assisted precision molding of 3D thin microstructure glass optics, in: Fiber Lasers and Glass Photonics: Materials through Applications, Strasbourg, France, SPIE, 22.-26.04.2018, p.1–21.
DOI: 10.1117/12.2307060
Google Scholar
[18]
A.T. Vu, A.N. Vu, T. Grunwald, T. Bergs, Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding, J American Ceramic Society 103 (2020) 2791–2807. https://doi.org/10.1111/jace.16963.
DOI: 10.1111/jace.16963
Google Scholar
[19]
A.T. Vu, A.N. Vu, G. Liu, T. Grunwald, O. Dambon, F. Klocke, T. Bergs, Experimental investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared thermography, J American Ceramic Society 102 (2019) 2116–2134. https://doi.org/10.1111/jace.16029.
DOI: 10.1111/jace.16029
Google Scholar
[20]
A.T. Vu, T. Helmig, A.N. Vu, Y. Frekers, T. Grunwald, R. Kneer, T. Bergs, Numerical and experimental determinations of contact heat transfer coefficients in nonisothermal glass molding, J American Ceramic Society 103 (2020) 1258–1269. https://doi.org/10.1111/jace.16756.
DOI: 10.1111/jace.16756
Google Scholar
[21]
A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Machine learning-based predictive modeling of contact heat transfer, International Journal of Heat and Mass Transfer 174 (2021) 121300. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121300.
DOI: 10.1016/j.ijheatmasstransfer.2021.121300
Google Scholar
[22]
J.-H. Staasmeyer, G. Liu, M. Friedrichs, Skalierbare Abformung von Linsen für IR-Anwendungen (2017).
Google Scholar
[23]
A.T. Vu, T. Grunwald, T. Bergs, Thermo-viscoelastic Modeling of Nonequilibrium Material Behavior of Glass in Nonisothermal Glass Molding, Procedia Manufacturing 47 (2020) 1561–1568. https://doi.org/10.1016/j.promfg.2020.04.350.
DOI: 10.1016/j.promfg.2020.04.350
Google Scholar
[24]
G. Liu, Modeling Fracture Behavior in Precision Glass Molding, first edition, Apprimus Wissenschaftsverlag, Aachen, (2018).
Google Scholar
[25]
P.-A. Vogel, A.T. Vu, H. Mende, T. Grunwald, T. Bergs, R.H. Schmitt, Approaches and methodologies for process development of thin glass forming, in: Optifab 2019, Rochester, United States, SPIE, 14.-17.10.2019, p.68.
DOI: 10.1117/12.2536431
Google Scholar
[26]
F. Klocke, Y. Wang, D. Hollstegge, F. Wang, G. Liu, Precision glass molding of wafer lens optics, in: Proceedings of the 12th International Conference of the European Society for Precision Engineering and Nanotechnology: June 4th - 7th [8th] 2012, Stockholm, Sweden, Euspen, Bedford, 2012, p.181–184.
Google Scholar
[27]
H. Mende, P.-A. Vogel, M. Padrón Hinrichs, R.H. Schmitt, Industrie 4.0 in praxisnaher Anwendung*: Vom Retrofit über Datenspeicherung zum maschinellen Lernen am Beispiel der Glasumformung, wt-online 2019 (2019) 779–784.
DOI: 10.37544/1436-4980-2019-10-83
Google Scholar
[28]
R.B. Tan, H.H. Khoo, An LCA study of a primary aluminum supply chain, Journal of Cleaner Production 13 (2005) 607–618. https://doi.org/10.1016/j.jclepro.2003.12.022.
DOI: 10.1016/j.jclepro.2003.12.022
Google Scholar