[1]
Information on https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions.
Google Scholar
[2]
E. Worrell, J. Allwood, T. Gutowski, The role of material efficiency in environmental stewardship, Annual Review of Environment and Resources. 41 (2016) 575-598.
DOI: 10.1146/annurev-environ-110615-085737
Google Scholar
[3]
T.G. Gutowski, S. Sahni, J.M. Allwood, M.F. Ashbyand, E. Worrel, The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 371(1986) 20120003.
DOI: 10.1098/rsta.2012.0003
Google Scholar
[4]
K.N. Zaman, A.N Siddiquee, Z.A. Khan, S.K. Shihab, Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys, Journal of alloys and Compounds. 648 (2015) 360-367.
DOI: 10.1016/j.jallcom.2015.06.246
Google Scholar
[5]
J.H. Bae, A.P. Rao, K.H. Kim, N.J. Kim, Cladding of Mg alloy with Al by twin-roll casting, Scripta Materialia. 64.9 (2011) 836-9.
DOI: 10.1016/j.scriptamat.2011.01.013
Google Scholar
[6]
B. Zhu, W. Liang, X. Li, Interfacial microstructure, bonding strength and fracture of magnesium–aluminum laminated composite plates fabricated by direct hot pressing, Materials Science and Engineering A. 528.21 (2011) 6584-6588.
DOI: 10.1016/j.msea.2011.05.015
Google Scholar
[7]
M. Mondal, S. Basak, H. Das, S.T. Hong, H. Choi, J.W. Park, H.N. Han, Manufacturing of magnesium/aluminum bimetallic ring components by friction stir assisted simultaneous forging and solid-state joining, International Journal of Precision Engineering and Manufacturing-Green Technology. 8.5 (2021) 1429-38.
DOI: 10.1007/s40684-020-00244-0
Google Scholar
[8]
S. Ossenkemper, C. Dahnke, A.E. Tekkaya, Analytical and experimental bond strength investigation of cold forged composite shafts, Journal of Materials Processing Technology. 264 (2019) 190-199.
DOI: 10.1016/j.jmatprotec.2018.09.008
Google Scholar
[9]
O. Napierala, C. Dahnke, A.E. Tekkaya, Simultaneous deep drawing and cold forging of multi-material components: draw-forging, CIRP Annals. 68.1 (2019) 269-272.
DOI: 10.1016/j.cirp.2019.03.001
Google Scholar
[10]
M. Gökelma, A.V. Olivares A, G. Tranell, Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash, Waste Management. 130 (2021) 65-73.
DOI: 10.1016/j.wasman.2021.05.012
Google Scholar
[11]
Information on https://www.g20.org/rome-summit.html.
Google Scholar
[12]
Information on https://www.european-aluminium.eu/media/2929/2020-05-13-european-aluminium_circular-aluminium-action-plan.pdf.
Google Scholar
[13]
J. Gronostajski, A. Matuszak, The recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips, Journal of Materials Processing Technology. 92 (1999) 35-41.
DOI: 10.1016/s0924-0136(99)00166-1
Google Scholar
[14]
A.E. Tekkaya, M. Schikorra, D. Becker, D. Biermann, N. Hammer, K. Pantke, Hot profile extrusion of AA-6060 aluminum chips, Journal of Materials Processing Technology. 209.7 (2009) 3343-3350.
DOI: 10.1016/j.jmatprotec.2008.07.047
Google Scholar
[15]
J.Z. Gronostajski, H. Marciniak, A. Matuszak, Production of composites on the base of AlCu4 alloy chips, Journal of Materials Processing Technology. 60.1-4 (1996) 719-722.
DOI: 10.1016/0924-0136(96)02410-7
Google Scholar
[16]
M. Stern, Method for treating aluminum or aluminum alloy scrap, U.S Patent 2,391,752. (1945).
Google Scholar
[17]
B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resources, Conservation and Recycling. 125 (2017) 37-47.
DOI: 10.1016/j.resconrec.2017.06.004
Google Scholar
[18]
J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: can solid state processes significantly reduce the environmental impact of aluminium recycling?, CIRP Annals. 64.1 (2015):37-40.
DOI: 10.1016/j.cirp.2015.04.051
Google Scholar
[19]
W. Tang, A.P. Reynolds, Friction consolidation of aluminum chips, Friction Stir Welding and Processing VI. 289 (2011).
DOI: 10.1002/9781118062302.ch34
Google Scholar
[20]
D. Baffari, A.P. Reynolds, X. Li, L. Fratini, Bonding prediction in friction stir consolidation of aluminum alloys: A preliminary study, In AIP Conference Proceedings. 1960.1 (2018) 050002.
DOI: 10.1063/1.5034875
Google Scholar
[21]
G. Buffa, D. Baffari, G. Ingarao, L. Fratini, Uncovering technological and environmental potentials of aluminum alloy scraps recycling through friction stir consolidation, International Journal of Precision Engineering and Manufacturing-Green Technology. 7.5 (2020) 955-964.
DOI: 10.1007/s40684-019-00159-5
Google Scholar
[22]
X. Li, D. Baffari, A.P. Reynolds, Friction stir consolidation of aluminum machining chips, The international Journal of Advanced Manufacturing Technology. 94.5 (2018): 2031-2042.
DOI: 10.1007/s00170-017-1016-4
Google Scholar
[23]
E. Worrell, M. Reuter, Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists, Newnes, (2014).
Google Scholar
[24]
B. Bridgens, M. Powell, G. Farmer, C. Walsh, E. Reed, M. Royapoor, P. Gosling, J. Hall, O. Heidrich, Creative upcycling: Reconnecting people, materials and place through making, Journal of Cleaner Production. 189 (2018)145-154.
DOI: 10.1016/j.jclepro.2018.03.317
Google Scholar
[25]
A. Latif, G. Ingarao, M. Gucciardi, L. Fratini, A novel approach to enhance mechanical properties during recycling of aluminum alloy scrap through friction stir consolidation, The International Journal of Advanced Manufacturing Technology. (2021) 1-17.
DOI: 10.1007/s00170-021-08346-y
Google Scholar