[1]
P. Peyre and R. Fabbro, Laser shock processing: a review of the physics and applications,, Opt. Quantum Electron., vol. 27, no. 12, p.1213–1229, Dec. 1995,.
Google Scholar
[2]
Y. Hu, X. Xu, Z. Yao, and J. Hu, Laser peen forming induced two way bending of thin sheet metals and its mechanisms,, J. Appl. Phys., vol. 108, no. 7, p.073117, Oct. 2010,.
DOI: 10.1063/1.3486218
Google Scholar
[3]
Y. Hu, Z. Li, X. Yu, and Z. Yao, Effect of elastic prestress on the laser peen forming of aluminum alloy 2024-T351: Experiments and eigenstrain-based modeling,, J. Mater. Process. Technol., vol. 221, p.214–224, Jul. 2015,.
DOI: 10.1016/j.jmatprotec.2015.02.030
Google Scholar
[4]
Y. Hu, X. Zheng, D. Wang, Z. Zhang, Y. Xie, and Z. Yao, Application of laser peen forming to bend fibre metal laminates by high dynamic loading,, J. Mater. Process. Technol., vol. 226, p.32–39, Dec. 2015,.
DOI: 10.1016/j.jmatprotec.2015.07.003
Google Scholar
[5]
M. Luo, Y. Hu, L. Hu, and Z. Yao, Efficient process planning of laser peen forming for complex shaping with distributed eigen-moment,, J. Mater. Process. Technol., vol. 279, p.116588, May 2020,.
DOI: 10.1016/j.jmatprotec.2020.116588
Google Scholar
[6]
N. Hfaiedh, P. Peyre, I. Popa, V. Vignal, and W. Seiler, Experimental and Numerical Analysis of the Distribution of Residual Stresses Induced by Laser Shock Peening in a 2050-T8 Aluminium Alloy,, Mater. Sci. Forum, vol. 681, p.296–302, Mar. 2011,.
DOI: 10.4028/www.scientific.net/msf.681.296
Google Scholar
[7]
Y. Hu, Y. Xie, D. Wu, and Z. Yao, Quantitative evaluation of specimen geometry effect on bending deformation of laser peen forming,, Int. J. Mech. Sci., vol. 150, p.404–410, Jan. 2019,.
DOI: 10.1016/j.ijmecsci.2018.10.040
Google Scholar
[8]
H. K. Amarchinta, R. V. Grandhi, A. H. Clauer, K. Langer, and D. S. Stargel, Simulation of residual stress induced by a laser peening process through inverse optimization of material models,, J. Mater. Process. Technol., vol. 210, no. 14, p.1997–2006, Nov. 2010,.
DOI: 10.1016/j.jmatprotec.2010.07.015
Google Scholar
[9]
S. Keller, M. Horstmann, N. Kashaev, and B. Klusemann, Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening,, Int. J. Fatigue, vol. 124, p.265–276, Jul. 2019,.
DOI: 10.1016/j.ijfatigue.2018.12.014
Google Scholar
[10]
R. Sun, S. Keller, Y. Zhu, W. Guo, N. Kashaev, and B. Klusemann, Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy,, Int. J. Fatigue, vol. 145, p.106081, Apr. 2021,.
DOI: 10.1016/j.ijfatigue.2020.106081
Google Scholar
[11]
Z. Kallien, S. Keller, V. Ventzke, N. Kashaev, and B. Klusemann, Effect of Laser Peening Process Parameters and Sequences on Residual Stress Profiles,, Metals, vol. 9, no. 6, p.655, Jun. 2019,.
DOI: 10.3390/met9060655
Google Scholar
[12]
C. Correa et al., Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy,, Opt. Laser Technol., vol. 73, p.179–187, Oct. 2015,.
DOI: 10.1016/j.optlastec.2015.04.027
Google Scholar
[13]
R. R. Boyer, An overview on the use of titanium in the aerospace industry,, Int. Symp. Metall. Technol. Titan. Alloys, vol. 213, no. 1, p.103–114, Aug. 1996,.
Google Scholar
[14]
R. A. Brockman et al., Prediction and characterization of residual stresses from laser shock peening,, Int. J. Fatigue, vol. 36, no. 1, p.96–108, Mar. 2012,.
Google Scholar
[15]
T. J. Spradlin, R. V. Grandhi, and K. Langer, Experimental validation of simulated fatigue life estimates in laser‐peened aluminum,, Int. J. Struct. Integr., vol. 2, no. 1, p.74–86, Jan. 2011,.
DOI: 10.1108/17579861111108635
Google Scholar
[16]
M. Sticchi et al., A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples,, J. Eng., vol. 2015, no. 13, p.97–105, May 2015,.
DOI: 10.1049/joe.2015.0106
Google Scholar
[17]
L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, Shock waves from a water-confined laser-generated plasma,, J. Appl. Phys., vol. 82, no. 6, p.2826–2832, Sep. 1997,.
DOI: 10.1063/1.366113
Google Scholar
[18]
Y. Hu and R. V. Grandhi, Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology,, Surf. Coat. Technol., vol. 206, no. 15, p.3374–3385, Mar. 2012,.
DOI: 10.1016/j.surfcoat.2012.01.050
Google Scholar
[19]
Z. Zhou et al., Thermal relaxation of residual stress in laser shock peened Ti–6Al–4V alloy,, Surf. Coat. Technol., vol. 206, no. 22, p.4619–4627, Jun. 2012,.
DOI: 10.1016/j.surfcoat.2012.05.022
Google Scholar
[20]
G. R. Johnson and W. H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings of the 7th International Symposium on Ballistic,, The Hague, Apr. 1983, p.541–547.
Google Scholar
[21]
W.-S. Lee and C.-F. Lin, High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests,, J. Mater. Process. Technol., vol. 75, no. 1, p.127–136, Mar. 1998,.
DOI: 10.1016/s0924-0136(97)00302-6
Google Scholar
[22]
G. Lu et al., Methods for the suppression of 'residual stress holes' in laser shock treatment,, Mater. Today Commun., vol. 28, p.102486, Sep. 2021,.
Google Scholar