Real-Time Quality Control in Thin Glass Forming Using Infrared Thermography and Deep Learning

Article Preview

Abstract:

Towards the growing trends in lightweight, flexible, and optical advantages, thin glasses become key components in numerous applications such as consumer electronics like foldable smartphones, or automotive interiors. Nonisothermal glass molding promises a viable technology for the cost-efficient production of precision glass components. In the existing production, the quality of the glass products can only be accessed at the end of the hot forming process. Due to high rates of product failures often appeared in the precision glass molding processes, the current quality control of the produced optical products suffers low process efficiency. This work introduces an enabling approach for monitoring the product quality in real-time using thermography and machine learning. Specifically, the acquisition of the temperature fields of the glass components during the hot forming stage enabled by an infrared thermographic camera allows machine learning to predict the final shape of the molded components at the end of the forming process. Several transfer learning models have been investigated to demonstrate the proposed method. To further enhance the prediction performance, self-built convolutional neural network models were developed using different types of image data. By incorporating the time-series image data as an input to the learning models, the prediction performance was achieved. The model built in the present work demonstrates an excellent prediction accuracy where the difference between the measured and predicted shapes of the glass products can be kept at low double-digit micrometers. Such accuracy achieved by our self-developed machine learning model promisingly satisfy the quality control in serial productions of numerous precision optical glass components in automotive and consumer electronics sectors.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Bax & Company, A vision on the future of automotive lightweighting. Alliance - A report on the European Union's Horizon 2020. Grant Agreement No. 723893.

Google Scholar

[2] Information on. https://www.ipt.fraunhofer.de/en/projects/glass4autofuture.html.

Google Scholar

[3] A.T. Vu, P.-A. Vogel, O. Dambon, F. Klocke, Vacuum-assisted precision molding of 3D thin microstructure glass optics, in: Fiber Lasers and Glass Photonics: Materials through Applications, Strasbourg, France, SPIE, Bellingham, Washington, USA, (2018).

DOI: 10.1117/12.2307060

Google Scholar

[4] A.T. Vu, H. Kreilkamp, O. Dambon, F. Klocke, Nonisothermal glass molding for the cost-efficient production of precision freeform optics, Opt. Eng 55 (2016) 71207.

DOI: 10.1117/1.oe.55.7.071207

Google Scholar

[5] T. Zhou, J. Yan, N. Yoshihara, T. Kuriyagawa, Study on nonisothermal glass molding press for aspherical lens, JAMDSM 4 (2010) 806–815.

DOI: 10.1299/jamdsm.4.806

Google Scholar

[6] P.-A. Vogel, A.T. Vu, H. Mende, T. Grunwald, T. Bergs, R.H. Schmitt, Approaches and methodologies for process development of thin glass forming, in: Optifab 2019, Rochester, United States, SPIE, Bellingham, Washington, USA, 2019, p.68.

DOI: 10.1117/12.2536431

Google Scholar

[7] H. Zang, J. Yu, Y. Zhou, B. Tao, Non-isothermal molding technology research of ultra-precision glass lens, in: International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing; and Micro/Nano Technologies, Beijing, China, SPIE, 2014, p.929517.

DOI: 10.1117/12.2073136

Google Scholar

[8] H. Kreilkamp, A.T. Vu, O. Dambon, F. Klocke, Replicative manufacturing of complex lighting optics by non-isothermal glass molding, in: Polymer Optics and Molded Glass Optics: Design, Fabrication, and Materials 2016, San Diego, California, United States, SPIE, 2016, 99490B.

DOI: 10.1117/12.2235848

Google Scholar

[9] H. Kreilkamp, A.T. Vu, O. Dambon, N.F. Klocke, Nonisothermal glass moulding of complex LED optics, in: S.K. Sundaram (Ed.), 77th Conference on Glass Problems, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2017, p.141–149.

DOI: 10.1002/9781119417507.ch13

Google Scholar

[10] Y. Zhong, R. Du, L. Zhang, A.Y. Yi, Structrual Coloration of Surfaces With Microstructures Replicated by Non-Isothermal Precision Glass Molding, in: Proceedings of the ASME 15th International Manufacturing Science and Engineering Conference - 2020, Virtual, Online, the American Society of Mechanical Engineers; Curran Associates Inc, New York, NY, Red Hook, NY, (2020).

DOI: 10.1115/msec2020-8467

Google Scholar

[11] C. Rojacher, A.T. Vu, T. Grunwald, T. Bergs, Precision glass molding of infrared optics with anti-reflective microstructures, in: Optical Manufacturing and Testing XIII, Online Only, United States, SPIE, 24.08.2020 - 28.08.2020, p.30.

DOI: 10.1117/12.2570519

Google Scholar

[12] A.T. Vu, C. Rojacher, T. Grunwald, T. Bergs, Molded anti-reflective structures of chalcogenide glasses for infrared optics by precision glass molding, in: Optifab 2019, Rochester, United States, SPIE, Bellingham, Washington, USA, 2019, p.67.

DOI: 10.1117/12.2536548

Google Scholar

[13] T. Zhou, J. Yan, T. Kuriyagawa, High-Efficiency and Ultra-precision Glass Molding of Aspherical Lens and Microstructures, in: Proceedings of International Symposium on Ultraprecision Engineering and Nanotechnology.

Google Scholar

[14] H. Kreilkamp, J.-H. Staasmeyer, L. Niendorf, The Future of Glass Optics Replication, Optik & Photonik 11 (2016) 28–31.

DOI: 10.1002/opph.201600023

Google Scholar

[15] Y. Zhang, G. Yan, Z. Li, F. Fang, Quality improvement of collimating lens produced by precision glass molding according to performance evaluation, Opt. Express 27 (2019) 5033–5047.

DOI: 10.1364/oe.27.005033

Google Scholar

[16] F. Wang, Y. Chen, F. Klocke, G. Pongs, A.Y. Yi, 2009. Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses. Journal of Manufacturing Science and Engineering 131, 011014. https://doi.org/10.1115/1.3063652.

DOI: 10.1115/1.3063652

Google Scholar

[17] G. Liu, A.T. Vu, O. Dambon, F. Klocke, Glass Material Modeling and its Molding Behavior, MRS Advances 2 (2017) 875–885.

DOI: 10.1557/adv.2017.64

Google Scholar

[18] T.D. Pallicity, A.-T. Vu, K. Ramesh, P. Mahajan, G. Liu, O. Dambon, Birefringence measurement for validation of simulation of precision glass molding process, J Am Ceram Soc 100 (2017) 4680–4698.

DOI: 10.1111/jace.15010

Google Scholar

[19] A.T. Vu, H. Kreilkamp, B.J. Krishnamoorthi, O. Dambon, F. Klocke, A hybrid optimization approach in non-isothermal glass molding, in: AIP Conference Proceedings, Nantes, France, 2016, p.40006.

DOI: 10.1063/1.4963428

Google Scholar

[20] W. Yang, Z. Zhang, W. Ming, L. Yin, G. Zhang, Study on shape deviation and crack of ultra-thin glass molding process for curved surface, Ceramics International (2021).

DOI: 10.1016/j.ceramint.2021.11.228

Google Scholar

[21] A.T. Vu, T. Helmig, A.N. Vu, Y. Frekers, T. Grunwald, R. Kneer, T. Bergs, Numerical and experimental determinations of contact heat transfer coefficients in nonisothermal glass molding, J Am Ceram Soc 103 (2020) 1258–1269.

DOI: 10.1111/jace.16756

Google Scholar

[22] T. Zhou, Q. Zhou, J. Xie, X. Liu, X. Wang, H. Ruan, Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process, Appl. Opt. 56 (2017) 8394–8402.

DOI: 10.1364/ao.56.008394

Google Scholar

[23] A.T. Vu, Avila Hernandez, Rocio de los Angeles, T. Grunwald, T. Bergs, Modeling nonequilibrium thermoviscoelastic material behaviors of glass in Nonisothermal Glass Molding, J Am Ceram Soc (2022).

DOI: 10.1111/jace.18605

Google Scholar

[24] A.T. Vu, T. Grunwald, T. Bergs, Thermo-viscoelastic Modeling of Nonequilibrium Material Behavior of Glass in Nonisothermal Glass Molding, Procedia Manufacturing 47 (2020) 1561–1568.

DOI: 10.1016/j.promfg.2020.04.350

Google Scholar

[25] A.T. Vu, A.N. Vu, T. Grunwald, T. Bergs, Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding, J Am Ceram Soc 103 (2020) 2791–2807.

DOI: 10.1111/jace.16963

Google Scholar

[26] H. Kreilkamp, J.-H. Staasmeyer, L. Niendorf, The Future of Glass Optics Replication, Optik & Photonik 11 (2016) 28–31.

DOI: 10.1002/opph.201600023

Google Scholar

[27] A.T. Vu, A.N. Vu, G. Liu, T. Grunwald, O. Dambon, F. Klocke, T. Bergs, Experimental investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared thermography, J Am Ceram Soc 102 (2019) 2116–2134.

DOI: 10.1111/jace.16029

Google Scholar

[28] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in: Advances in Neural Information Processing Systems, Curran Associates, Inc, (2012).

DOI: 10.1145/3065386

Google Scholar

[29] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, in: Proceedings of the 31st International Conference on Machine Learning, PMLR, Bejing, China, 2014, p.647–655.

Google Scholar

[30] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network Dissection: Quantifying Interpretability of Deep Visual Representations, (2017).

DOI: 10.1109/cvpr.2017.354

Google Scholar

[31] B. Neyshabur, H. Sedghi, C. Zhang, What is being transferred in transfer learning?, in: Advances in Neural Information Processing Systems, Curran Associates, Inc, 2020, p.512–523.

Google Scholar

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, Miami, FL, IEEE, Piscataway, NJ, 2009, p.248–255.

DOI: 10.1109/cvpr.2009.5206848

Google Scholar

[33] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization, J. Mach. Learn. Res. 18 (2018) 1–52.

Google Scholar

[34] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, CoRR abs/1412.6980 (2015).

Google Scholar

[35] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Physics-Informed Data-Driven Models for Predicting Time- and Temperature-Dependent Viscoelastic Material Behaviors of Optical Glasses, SSRN Journal (2021). https://doi.org/10.2139/SSRN.3822865.

DOI: 10.2139/ssrn.3822865

Google Scholar

[36] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Machine learning-based predictive modeling of contact heat transfer, International Journal of Heat and Mass Transfer 174 (2021) 121300.

DOI: 10.1016/j.ijheatmasstransfer.2021.121300

Google Scholar

[37] Y. Yao, L. Rosasco, A. Caponnetto, On Early Stopping in Gradient Descent Learning, Constr Approx 26 (2007) 289–315.

DOI: 10.1007/s00365-006-0663-2

Google Scholar

[38] S.S. Alahmari, D.B. Goldgof, P.R. Mouton, L.O. Hall, Challenges for the Repeatability of Deep Learning Models, IEEE Access 8 (2020) 211860–211868.

DOI: 10.1109/access.2020.3039833

Google Scholar