Reduced FFT-Based Simulation of a Mechanically Loaded Clustered Microstructure Using an Adaptive Set of Fourier Modes

Article Preview

Abstract:

Processes, such as deep rolling or induction hardening, have a remarkable influence on the material properties within the surface layer of a work piece. Our overall goal is to develop efficient two-scale methods, which are able to show the microstructural evolution of the machined material. The calculation of a spatially resolved microstructure comes along with a high computational effort. To reduce the computational costs, we combine a clustered description of the structure [1] with a model order reduction technique for the performed fast Fourier transformations (FFT) [2]. We choose a reduced set of Fourier modes, which is adapted to the underlying microstructure and thus based on the occurring strain field [3]. By that, we analyze the influence of a mechanical impact on an elasto-plastically deforming material.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. Waimann, C. Gierden, A. Schmidt, B. Svendsen and S. Reese: Proc. Appl. Math. Mech. 21 (2021), e202000263.

DOI: 10.1002/pamm.202000263

Google Scholar

[2] H. Moulinec and P. Suquet: Comput. Methods Appl. Mech. Engrg. 157 (1) (1998), pp.69-94.

Google Scholar

[3] C. Gierden, J. Waimann, B. Svendsen and S. Reese: Comput. Methods Mater. Sci. 21.1 (2021), pp.51-58.

Google Scholar

[4] J. Kochmann, S. Wulfinghoff, L. Ehle, J. Mayer, B. Svendsen and S. Reese: Comput. Mech. 61 (2018), pp.751-764.

DOI: 10.1007/s00466-017-1476-2

Google Scholar

[5] C. Gierden, J. Kochmann, J. Waimann, T. Kinner-Becker, J. Sölter, B. Svendsen and S.Reese: Comp. Methods Appl. Engrg. 374 (2021), 113566.

DOI: 10.1016/j.cma.2020.113566

Google Scholar

[6] A. Prakash and R.A. Lebensohn: Modelling Simulation Mater. Sci. Eng. 17 (2009), 064010.

Google Scholar

[7] B. Liu, D. Raabe, F. Roters, P. Eisenlohr and R. Lebensohn: Modelling Simulation Mater. Sci. Eng. 18 (2010), 085005.

DOI: 10.1088/0965-0393/18/8/085005

Google Scholar

[8] P. Eisenlohr, M. Diehl, R.A. Lebensohn and F. Roters: Int. J. Plast. 46 (2013), pp.37-53.

Google Scholar

[9] H. Moulinec and P. Suquet: C. R. Acad. Sci. 318 (1994), pp.1417-1423.

Google Scholar

[10] V. Vinogradov and G.W. Milton: Int. J. Numer. Methods Eng.76 (2008), pp.1678-1695.

Google Scholar

[11] J. Zeman, J. Vodrejc, J. Novak and I. Marek: J. Comput. Phys. 229 (21) (2010), pp.8065-8071.

Google Scholar

[12] M. Kabel, T. Böhlke and M. Schneider: Comput. Mech. 54 (2014), pp.1497-1514.

Google Scholar

[13] J.C. Michel, H. Moulinec and P. Suquet: Int. J. Numer. Methods Eng. 52 (2001), pp.139-160.

Google Scholar

[14] R.A. Lebensohn, P.P. Castaneda, R. Brenner and O. Castelnau: Comput. Meth. Microstructure-Property Relations, Springer (2011), pp.393-441.

Google Scholar

[15] R.A. Lebensohn, A.K. Kanjarla and P. Eisenlohr: Int. J. Plast. 32 (2012), pp.59-69.

Google Scholar

[16] D.J. Eyre and G.W. Milton: Eur. Phys. J. 6 (1999), pp.41-47.

Google Scholar

[17] M. Schneider: Acta Mech. 232 (2021), pp.2051-2100.

Google Scholar

[18] J. MacQueen: Proc. 5th Berkeley Symp. Math. Stat. Prob. 1 (1967), p.281–297.

Google Scholar

[19] Z. Liu, M. A. Bessa and W. K. Liu: Comp. Methods Appl. Engrg. 306 (2016), pp.319-341.

Google Scholar

[20] Z. Hashin and H. Shtrikman: J. Mech. Phys. Solids 11 (1963), pp.127-140.

Google Scholar

[21] E. Kröner: CISM Lecture Notes 92, Springer (1972).

Google Scholar

[22] J.R. Willis: C.S. Yih (Ed.), Advances in Applied Mechanics 21, Academic Press (1981).

Google Scholar

[23] J. Kochmann, K. Manjunatha, C. Gierden, S. Wulfinghoff, B. Svendsen and S. Reese: Comp. Methods Appl. Engrg. 347 (2019), pp.622-638.

DOI: 10.1016/j.cma.2018.11.032

Google Scholar

[24] C. Gierden, J. Waimann, B. Svendsen and S. Reese: Comp. Methods Appl. Engrg. 386 (2021), 114131.

Google Scholar