Analysis, Prediction and Reduction of Emissions in an Industrial Hot Forming Process Chain for the Manufacture of Sheet Metal Components

Article Preview

Abstract:

Increasing demands for reducing greenhouse gases drive the metal processing industries to a CO2-neutral production. A thorough understanding of CO2 emission sources from the stage of material acquisition up to the final component is thus necessary to improve the CO2 footprint of sheet metal hot forming process chains. To emphasize on this, an exemplary hot forming process chain is assessed to identify the impact of each sub-process step on total CO2 emissions and the savings potential of individual measures is evaluated. Moreover, a mathematical model is proposed that enables for the prediction of the product specific CO2 emissions as early as in the product design stage. This model is tested to calculate the CO2 emissions resulted during the production of an exemplary hot stamped sheet component. The results point out that the heating stage is responsible for the second highest percentage of CO2 emissions in the process chain next to the material acquisition. Thus, as one of the most suitable measures, a concept to recover process heat from hot formed components to the cold initial blanks is proposed and evaluated analytically.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] M. Dehli, Energieeffizienz in Industrie, Dienstleistung und Gewerbe, Springer, Wiesbaden, (2020).

DOI: 10.1007/978-3-658-23204-7_7

Google Scholar

[2] A. Göschel, A. Sterzing, J. Schönherr, Balancing procedure for energy and material flows in sheet metal forming, CIRP Journal of Manufacturing Science and Technology 4 (2011) 170-179.

DOI: 10.1016/j.cirpj.2011.06.018

Google Scholar

[3] G. Ingarao, R. Di Lorenzo, F. Micari, Sustainability issues in sheet metal forming processes: an overview, Journal of Cleaner Production 19 (2011) 337-347.

DOI: 10.1016/j.jclepro.2010.10.005

Google Scholar

[4] G. Ingarao, G. Ambrogio, F. Gagliardi, R. Di Lorenzo, A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stamping processes, Journal of Cleaner Production 29-30 (2012) 255-268.

DOI: 10.1016/j.jclepro.2012.01.012

Google Scholar

[5] M. Gao, K. He, L. Li, Q. Wang, C. Liu, A Review on Energy Consumption, Energy Efficiency and Energy Saving of Metal Forming Processes from Different Hierarchies, Processes 7 (2019) 357.

DOI: 10.3390/pr7060357

Google Scholar

[6] P. Nava, Minimizing Carbon Emissions in Metal Forming, Master thesis, Queen's University, Ontario, (2009).

Google Scholar

[7] Y. Wang, H. Zhang, Z. Zhang, J. Wang, Development of an Evaluating Method for Carbon Emissions of Manufacturing Process Plans, Discrete Dynamics in Nature and Society (2015).

DOI: 10.1155/2015/784751

Google Scholar

[8] M. Gao, H. Huang, X. Li, Z. Liu, Carbon emission analysis and reduction for stamping process chain, International Journal of Adv. Manuf. Tech. 91 (2017) 667-678.

DOI: 10.1007/s00170-016-9732-8

Google Scholar

[9] H. Cao, H. Li, H. Cheng, Y. Luo, R. Yin, Y. Chen, A carbon efficiency approach for life-cycle carbon emission characteristics of machine tools, Journal of Cleaner Production 37 (2012) 19-28.

DOI: 10.1016/j.jclepro.2012.06.004

Google Scholar

[10] H. Cao, H. Li, Simulation-based approach to modeling the carbon emissions dynamic characteristics of manufacturing system considering disturbances, Journal of Cleaner Production 64 (2014) 572-580.

DOI: 10.1016/j.jclepro.2013.10.002

Google Scholar

[11] K. R. Hegemann, R. Guder, Stahlerzeugung., Springer, Wiesbaden, (2020).

Google Scholar

[12] A. Hasanbeigi, M. Arens, J. CR. Cardenas, L. Price, R. Triolo, Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States, Resources, Conservation and Recycling 113 (2016) 127-139.

DOI: 10.1016/j.resconrec.2016.06.008

Google Scholar

[13] T. Fleiter, B. Schlomann, W. Eichhammer, Energieverbrauch und CO2- Emissionen industrieller Prozesstechnologien, Einsparpotenziale, Hemmnisse und Instrumente, Fraunhofer-Verl., Stuttgart, (2013).

Google Scholar

[14] M. Weigel, M. Fischedick, J. Marzinkowski, P. Winzer, Multicriteria analysis of primary steelmaking technologies, Journal of Cleaner Production 112 (2016) 1064-1076.

DOI: 10.1016/j.jclepro.2015.07.132

Google Scholar

[15] M. Merklein, H. Hagenah, T. Schneider, Sheet-Bulk Metal Forming Processes – State of the Art and its Perspectives, in: R. Kolleck (Eds.), TTP 2013 – Tools and Technologies for Processing Ultra High Strength Materials, Verlag der TU Graz, (2013).

Google Scholar

[16] K. Kawamoto, H. Ando, K. Yamamichi, Application of servo presses to metal forming processes, Procedia Manufacturing 15 (2018) 31-38.

DOI: 10.1016/j.promfg.2018.07.166

Google Scholar

[17] X. Yan, B. Chen, Energy-Efficiency Improvement and Processing Performance Optimization of Forging Hydraulic Presses Based on an Energy-Saving Buffer System, Applied Sciences 10 (2020) 6020.

DOI: 10.3390/app10176020

Google Scholar

[18] Y. S. Sun, J. G. Hu, H. B. Zheng, J. P. He, Y. Fang, W. P. Ruan, Energy Saving Drive for Forming Equipments, AMR 154-155 (2010) 701-707.

DOI: 10.4028/www.scientific.net/amr.154-155.701

Google Scholar

[19] R. Muvunzi, D. Dimitrov, S. Matope, L. Mugwagwa, Application of surface modification technologies to improve performance of hot sheet metal forming tools: A review, ACRID (2017) 65-74.

DOI: 10.4108/eai.20-6-2017.2270182

Google Scholar

[20] S. Hernandez, J. Hardell, H. Winkelmann, M. Rodriguez Ripoll, B. Prakash, Influence of temperature on abrasive wear of boron steel and hot forming tool steels, Wear 338-339 (2015) 27-35.

DOI: 10.1016/j.wear.2015.05.010

Google Scholar

[21] P. Demmel, R. Golle, H. Hoffmann, R. Petry, Schneiden, in: K. Siegert (Ed.), Blechumformung, Springer, Berlin, (2015).

DOI: 10.1007/978-3-540-68418-3_6

Google Scholar

[22] E. Doege, B. A. Behrens, Handbuch Umformtechnik, Springer, Berlin, (2016).

Google Scholar

[23] B. Spring, W. Roetzel, Berechnung von Wärmeüberträgern, in: VDI-Gesellschaft (Ed.), VDI-Wärmeatlas, Springer, Berlin, (2013).

DOI: 10.1007/978-3-642-19981-3_5

Google Scholar