[1]
P. Hora, C. Karadogan, L. Tong, Numerische Modellierung thermischer und tribologischer Randbedingungen, in: Conference Proceedings Extrusion Zurich (2005).
Google Scholar
[2]
C. Karadogan, F. Vanini, L. Tong, P. Hora, State of the Art and Potential Development of Digital Extrusion Modeling, in: Light Metal Age 63 (2005), 40-43.
Google Scholar
[3]
H. S. Valberg, Applied Metal Forming including FEM Analysis, first edition, Cambridge University Press, Cambridge, (2010).
Google Scholar
[4]
T. Wanheim, N. Bay, A model for friction in metal forming processes, in: Ann. CIRP 27 (1976) 189–193.
Google Scholar
[5]
P. Hora, C. Becker, L. Tong, J. Maier, S. Müller, Advanced frictional models for extrusion application, in: Key Engineering Materials 585 (2013) 41-48.
DOI: 10.4028/www.scientific.net/kem.585.41
Google Scholar
[6]
L. Tong, FE Simulation of Bulk Forming Processes with a Mixed Eulerian-Lagrangian Formulation, PhD Thesis, ETH-Zurich (1995).
Google Scholar
[7]
C. Karadogan, Advanced methods in numerical modeling of extrusion processes, PhD Thesis, ETH-Zurich (2005).
Google Scholar
[8]
L. Wang, Modelling of friction for high temperature extrusion of aluminium alloys, PhD Thesis, TU Delft (2012).
Google Scholar
[9]
D. Horwatitsch, Entwicklung eines Reibmodells für hohe Temperaturen und hohe Umformgrade (Development of a Friction Model for High Temperatures and High Strains), In: Steinhoff, K. (ed.): Berichte zur Metallformgebung – vol 3. Kassel: Kassel university press, (2013).
Google Scholar
[10]
M. G. L. Crosio, Virtual analysis of welds formation during direct extrusion processes, PhD Thesis, ETH-Zurich (2020).
Google Scholar
[11]
C. Bertoli, Optimization of Hybrid Extrusion Dies with Internal Cooling Channels, PhD Thesis, ETH-Zurich (2020).
Google Scholar
[12]
M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter, FEM Validation of Front End and Back End Defects Evolution in AA6063 and AA6082 aluminum alloys profiles, in: Procedia Manufacturing 47 (2020) 202–208.
DOI: 10.1016/j.promfg.2020.04.178
Google Scholar
[13]
B. Reggiani, A. Segatori, L. Donati, L. Tomesani, Prediction of charge welds in hollow profiles extrusion by FEM simulations and experimental validation, in: The International Journal of Advanced Manufacturing Technology 69 (2013) 5-8.
DOI: 10.1007/s00170-013-5143-2
Google Scholar
[14]
T. Sheppard, EXTRUSION OF ALUMINIUM ALLOYS, first edition, Springer Science + Business Media, Dordrecht (1999).
Google Scholar
[15]
L. Donati, L. Tomesani, M. Schikorra, N. Ben Khalifa, A.E. Tekkaya, Friction model selection in FEM simulations of aluminium extrusion, in: Int. J. Surface Science and Engineering 4 (2010) 27-41.
DOI: 10.1504/ijsurfse.2010.029627
Google Scholar
[16]
W. Z. Misiolek, R. M. Kelly, Extrusion of aluminium alloys, ASM Handbook, 2005, pp.522-527.
Google Scholar
[17]
E. Doege, H. M. Nolkemper, I. Saeed, Fließkurvenatlas metallischer Werkstoffe, Hanser Verlag München Wien (1986).
Google Scholar
[18]
Altair HyperXtrude Manual.
Google Scholar