[1]
Y.T. Kim, K. Ikeda, Flow behavior of the billet surface layer in porthole die extrusion of aluminum, Metall Mater Trans A 31. (2000) 1635–1643.
DOI: 10.1007/s11661-000-0173-4
Google Scholar
[2]
N. Hashimoto, Application of Aluminum Extrusions to Automotive Parts. 150. (2015).
Google Scholar
[3]
N. Parson, J. Fourmann, J.F. Beland, Aluminum Extrusions for Automotive Crash Applications, SAE Technical Papers. (2017) 1–16.
DOI: 10.4271/2017-01-1272
Google Scholar
[4]
J. Hirsch, Automotive trends in aluminium - The European perspective, Materials Forum. 28(3) (2004) 15–23.
Google Scholar
[5]
H. Valberg, M. Lefstad, A. Costa, On the Mechanism of Formation of Back-End Defects in the Extrusion Process, Procedia Manufacturing 47 (2020) 245-252.
DOI: 10.1016/j.promfg.2020.04.207
Google Scholar
[6]
B. Reggiani, T. Pinter, L. Donati, Scrap assessment in direct extrusion. Int J Adv Manuf Technol 107 (2020) 2635–2647.
DOI: 10.1007/s00170-020-05127-x
Google Scholar
[7]
M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, T. Pinter, L. Tomesani, Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles. J. of Materi Eng and Perform 30 (2021) 4691–4699.
DOI: 10.1007/s11665-021-05752-x
Google Scholar
[8]
W.D. Finkelnburg, G. Scharf, Some investigations on the metal flow during extrusion of Al alloys, Proceedings of the 5th ET Seminar II (1992) 475–484.
Google Scholar
[9]
C. Jowett, J. Adams, C. Daughetee, G. Lea, O.A. Huff, N. Fossl, Scrap allocation, In the Proceedings of the 9th Extrusion Technology Seminar (2008) Florida, USA.
Google Scholar
[10]
T. Ishikawa, H. Sano, Y. Yoshida, N. Yukawa, J. Sakamoto, Y. Torzawa, Effect of Extrusion Conditions on Metal Flow and Microstructures of Aluminum Alloys, CIRP Annals 55 (1) (2006) 275-278.
DOI: 10.1016/s0007-8506(07)60415-6
Google Scholar
[11]
T. Hatzenbichler, B. Buchmayr, Finite element method simulation of internal defects in billet-to-billet extrusion, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224 (2010) 1029-1042.
DOI: 10.1243/09544054jem1830
Google Scholar
[12]
S. Lou, Y. Wang, C. Liu, S. Lu, C. Su, Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile, J. of Mater. Eng. and Perform. 26 (2017) 4121- 4130.
DOI: 10.1007/s11665-017-2771-y
Google Scholar
[13]
M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter, FEM Validation of front end and back end defects evolution in AA6063 and AA6082 aluminum alloys profiles, Procedia Manufacturing 47 (2020) 202-208, (Cottbus, DE), Elsevier Ltd.
DOI: 10.1016/j.promfg.2020.04.178
Google Scholar
[14]
A. Hensel, T. Spittel, Kraft und Arbeitsbedarf bildsamer Formgeburgsverfahren, 1. Auflage, Leipzig: VEB Deutscher Verlag fur Grundstoffindustrie, (1978).
Google Scholar
[15]
M. Schikorra, L. Donati, L. Tomesani, M. Kleiner, The role of friction in the extrusion of AA6060 aluminum alloy, process analysis and monitoring, Journal of Materials Processing Technology 191(1-3) (2007) 288-292.
DOI: 10.1016/j.jmatprotec.2007.03.096
Google Scholar
[16]
A.N. Levanov, Improvement of Metal Forming Processes by means of Useful Effects of Plastic Friction, Journal of Materials Processing Technology 72 (1997) 314-316.
DOI: 10.1016/s0924-0136(97)00191-x
Google Scholar
[17]
J. Hallström, Influence of friction on die filling in counterblow hammer forging, J. Mater. Process. Technol. 108 (2000) 21-25.
DOI: 10.1016/s0924-0136(00)00589-6
Google Scholar