FEM Analysis of the Skin Contamination Behavior in the Extrusion of a AA6082 Profile

Article Preview

Abstract:

In the extrusion of aluminum alloys, the skin contamination lead to the scraping of the profile extent in which this defect occurs. In order to optimize the scraping process, extrusion companies and die makers can either perform time-consuming and expensive analyses to experimentally determine the evolution of the defect or rely on predictive methods. Recently, numerical methods, as the Finite Elements, are increasingly used to predict the evolution of the skin contamination, but their accuracy is still uncertain. In this work, an AA6082 aluminum profile of industrial complexity is analysed and the data collected used to validate an innovative method for the prediction of the skin contamination evolution developed using the commercial FEM code Qform®. In addition, the results are used to assess the prediction accuracy of an industrial empirical formula often used by operators.

You have full access to the following eBook

Info:

Periodical:

Pages:

452-459

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] Y.T. Kim, K. Ikeda, Flow behavior of the billet surface layer in porthole die extrusion of aluminum, Metall Mater Trans A 31. (2000) 1635–1643.

DOI: 10.1007/s11661-000-0173-4

Google Scholar

[2] N. Hashimoto, Application of Aluminum Extrusions to Automotive Parts. 150. (2015).

Google Scholar

[3] N. Parson, J. Fourmann, J.F. Beland, Aluminum Extrusions for Automotive Crash Applications, SAE Technical Papers. (2017) 1–16.

DOI: 10.4271/2017-01-1272

Google Scholar

[4] J. Hirsch, Automotive trends in aluminium - The European perspective, Materials Forum. 28(3) (2004) 15–23.

Google Scholar

[5] H. Valberg, M. Lefstad, A. Costa, On the Mechanism of Formation of Back-End Defects in the Extrusion Process, Procedia Manufacturing 47 (2020) 245-252.

DOI: 10.1016/j.promfg.2020.04.207

Google Scholar

[6] B. Reggiani, T. Pinter, L. Donati, Scrap assessment in direct extrusion. Int J Adv Manuf Technol 107 (2020) 2635–2647.

DOI: 10.1007/s00170-020-05127-x

Google Scholar

[7] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, T. Pinter, L. Tomesani, Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles. J. of Materi Eng and Perform 30 (2021) 4691–4699.

DOI: 10.1007/s11665-021-05752-x

Google Scholar

[8] W.D. Finkelnburg, G. Scharf, Some investigations on the metal flow during extrusion of Al alloys, Proceedings of the 5th ET Seminar II (1992) 475–484.

Google Scholar

[9] C. Jowett, J. Adams, C. Daughetee, G. Lea, O.A. Huff, N. Fossl, Scrap allocation, In the Proceedings of the 9th Extrusion Technology Seminar (2008) Florida, USA.

Google Scholar

[10] T. Ishikawa, H. Sano, Y. Yoshida, N. Yukawa, J. Sakamoto, Y. Torzawa, Effect of Extrusion Conditions on Metal Flow and Microstructures of Aluminum Alloys, CIRP Annals 55 (1) (2006) 275-278.

DOI: 10.1016/s0007-8506(07)60415-6

Google Scholar

[11] T. Hatzenbichler, B. Buchmayr, Finite element method simulation of internal defects in billet-to-billet extrusion, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224 (2010) 1029-1042.

DOI: 10.1243/09544054jem1830

Google Scholar

[12] S. Lou, Y. Wang, C. Liu, S. Lu, C. Su, Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile, J. of Mater. Eng. and Perform. 26 (2017) 4121- 4130.

DOI: 10.1007/s11665-017-2771-y

Google Scholar

[13] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter, FEM Validation of front end and back end defects evolution in AA6063 and AA6082 aluminum alloys profiles, Procedia Manufacturing 47 (2020) 202-208, (Cottbus, DE), Elsevier Ltd.

DOI: 10.1016/j.promfg.2020.04.178

Google Scholar

[14] A. Hensel, T. Spittel, Kraft und Arbeitsbedarf bildsamer Formgeburgsverfahren, 1. Auflage, Leipzig: VEB Deutscher Verlag fur Grundstoffindustrie, (1978).

Google Scholar

[15] M. Schikorra, L. Donati, L. Tomesani, M. Kleiner, The role of friction in the extrusion of AA6060 aluminum alloy, process analysis and monitoring, Journal of Materials Processing Technology 191(1-3) (2007) 288-292.

DOI: 10.1016/j.jmatprotec.2007.03.096

Google Scholar

[16] A.N. Levanov, Improvement of Metal Forming Processes by means of Useful Effects of Plastic Friction, Journal of Materials Processing Technology 72 (1997) 314-316.

DOI: 10.1016/s0924-0136(97)00191-x

Google Scholar

[17] J. Hallström, Influence of friction on die filling in counterblow hammer forging, J. Mater. Process. Technol. 108 (2000) 21-25.

DOI: 10.1016/s0924-0136(00)00589-6

Google Scholar